科学家在研究铅原子核时取得突破 有助于揭开宇宙之谜

科学家在研究铅原子核时取得突破有助于揭开宇宙之谜在太空中碰撞的大质量中子星被认为能够创造出黄金和铂金等贵金属。尽管这些恒星的特性仍然是一个谜,但答案可能就在地球上常见的材料之一--铅的原子核的表皮下。事实证明,让原子核揭示支配中子星内部的强力的秘密是很困难的。现在,瑞典查尔姆斯理工大学的科学家们开发了一个新的计算机模型,可以提供答案。PC版:https://www.cnbeta.com/articles/soft/1327891.htm手机版:https://m.cnbeta.com/view/1327891.htm

相关推荐

封面图片

科学家用二维凝聚态物理学揭开中子星的秘密

科学家用二维凝聚态物理学揭开中子星的秘密在致密核物质中,夸克“排列”成一维的,对单维度加时间的计算可以追踪低能量激发如何穿过核物质图片来源:布鲁克海文国家实验室核物质(包括构成原子核的质子和中子的夸克和胶子)的行为极其复杂,在我们这个三维世界中尤其如此。来自凝聚态物理学的数学技术仅考虑一个空间维度(加上时间)的相互作用,极大地简化了这一挑战。利用这种二维方法,科学家们解决了描述低能激发如何在致密核物质系统中产生涟漪的复杂方程。这项工作表明,自然界中存在如此致密核物质的中子星中心可能会以一种意想不到的形式来描述。能够理解二维夸克相互作用为理解中子星(宇宙中最稠密的物质形式)打开了一扇新的窗口。这种方法可以帮助推进当前研究这些奇异恒星的“黄金时代”。研究成功的激增是由宇宙中引力波和电磁发射的最新发现引发的。这项工作表明,对于低能量激发,三维夸克相互作用的所有复杂性都会消失。这些低能激发是中子星发射辐射或其自身旋转磁场引发的轻微扰动。这种方法还可以与重离子碰撞中产生的密度较低但温度更高的核物质中的夸克相互作用进行新的比较。现代原子核理论,称为量子色动力学涉及受强核力束缚的夸克,这种由胶子携带的力将夸克限制在核子(质子和中子)中。当核物质的密度增加时,就像中子星内部一样,致密系统的行为更像是夸克团,各个核子之间没有清晰的边界。在这种状态下,系统边缘的夸克仍然受到强力的限制,因为球形系统一侧的夸克与另一侧的夸克相互作用强烈。布鲁克海文国家实验室研究人员的这项工作利用这种强相互作用的一维性质以及时间维度来解决系统边缘附近低能量激发的行为。这些低能量模式就像自由、无质量的玻色子的模式一样——在凝聚态物质中被称为“路廷格液体”。这种方法允许科学家计算任意给定密度下的路廷格液体的参数。它将提高他们探索预计在中子星内极端密度下发生的定性新现象的能力,其中核物质的行为与普通核中的完全不同,并将其与中子星中产生的更热(万亿度)的致密核物质进行比较。...PC版:https://www.cnbeta.com.tw/articles/soft/1368165.htm手机版:https://m.cnbeta.com.tw/view/1368165.htm

封面图片

物理学家发现原子核基态的分子结构

物理学家发现原子核基态的分子结构中国科学院近代物理研究所(IMP)的科学家及其合作者最近在原子核基态中发现了一种分子型结构。该研究成果发表在《物理评论快报》上,并作为"物理学特写"文章进行了重点报道。原子核是一个由质子和中子组成的量子多体系统,小得令人难以置信(只有原子的万分之一),但它却容纳了原子总质量的99.9%以上。核子之间的相互作用产生了各种有趣的核结构,从球形核到变形核,甚至是表面密度稀疏的中子晕。在这些结构中出现的团簇结构是一个引人入胜的现象。反运动学中的簇敲除反应示意图。资料来源:李鹏杰团簇结构的意义原子核的基态很少出现簇状结构。关于基态团簇结构的讨论可以追溯到1938年,当时理论物理学家通过分析α共轭核的结合能,提出在铍-8、碳-12和氧-16等原子核的基态中可能存在类似α分子的团簇结构。然而,由于经典壳模型的单粒子描述很受欢迎,这一理论假设仍未得到验证。IMP的科学家及其合作者利用一种涉及逆运动学敲除反应的新颖实验方法,验证了富中子原子核铍-10的基态存在分子型结构。该实验在日本理化学研究所西奈中心的放射性同位素束工厂(RIBF)进行。在实验中,铍-10的次级束以一半光速轰击一个2毫米厚的固体氢靶。束缚在铍-10原子核内的α原子团被质子击出,几乎没有动量转移到残余原子核上,从而保留了铍-10基态原子团结构的信息。铍-10原子核的类分子结构。资料来源:IMP李鹏杰证实长期存在的假设实验结果表明,敲除反应的实验截面与微观模型下的理论预测之间存在显著的一致性。这一验证支持了关于铍-10基态分子态结构的长期假说,即铍-10形成了一个α-α哑铃形内核,两个价中子垂直于内核轴旋转。论文第一作者、来自IMP的李鹏杰博士说:"类似的结构在原子尺度上也能发现,但在原子核的基态中却异常罕见。"这项研究首次为原子核基态分子态结构的理论描述提供了实验证据,并为进一步探索富中子核基态α簇结构的演化铺平了道路。...PC版:https://www.cnbeta.com.tw/articles/soft/1401029.htm手机版:https://m.cnbeta.com.tw/view/1401029.htm

封面图片

科学家利用新一代中子反射镜揭开物质的内在秘密

科学家利用新一代中子反射镜揭开物质的内在秘密林雪平大学薄膜物理学部研究员FredrikEriksson说:"与其提高中子源的功率(这是非常昂贵的),不如专注于改进光学技术。"中子与质子一起构成原子核。根据原子核中中子数量的不同,元素的性质也会不同。此外,中子还可用于对不同材料进行非常细致的分析。这种方法称为中子散射。这种测量在被称为中子源的特殊中子研究实验室进行。欧洲中子源(ESS)就是这样一个实验室,目前正在隆德郊外建造。该项目投资20亿欧元。ESS和其他中子源可以比作先进的显微镜,让科学家能够研究各种材料及其特性,直至原子级别。从研究原子结构、材料动力学、磁性到蛋白质功能,它们被广泛应用于各种领域。中子从原子核中释放出来需要巨大的能量。当中子在中子源中释放出来时,它们必须被捕获并被引向目标,也就是要研究的材料。特殊的反射镜用于引导和偏振中子。这些被称为中子光学。尽管ESS将拥有世界上最强大的中子源,但实验中可用的中子数量有限。为了增加到达仪器的中子数量,需要改进偏振光学。林雪平大学的研究人员通过在几个重要点上改进中子光学技术来提高效率,现在已经实现了这一目标。林雪平大学博士生AntonZubayer观察磁控溅射过程。图片来源:OlovPlanthaber"我们的镜子具有更好的反射率,从而增加了到达目标的中子数量。"物理、化学和生物系博士生兼《科学进展》(ScienceAdvances)上发表的这篇文章的第一作者安东-祖拜尔(AntonZubayer)说:"镜子还能更好地将中子极化为相同的自旋,这对极化实验非常重要。"他继续说道:"同时,由于不再需要大型磁铁,镜子可以放置在离样品或其他敏感设备更近的地方,而不会影响样品本身,这反过来又使新型实验成为可能。此外,我们还减少了漫散射,这意味着我们可以降低测量中的背景噪音。"技术创新与未来展望反射镜是在硅衬底上制造的。通过一种称为磁控溅射的工艺,可以在基片上镀上选定的元素。这种工艺可以在基板上镀上多层薄膜,即多层膜。在这种情况下,可以使用铁和硅薄膜,并与同位素富集的碳化硼混合。如果各层的厚度与中子波长的数量级相同,并且各层之间的界面非常光滑,那么中子就能以相位相交的方式从镜面射出,从而产生高反射率。林雪平大学物理、化学和生物系副教授FredrikEriksson和博士生AntonZubayer。图片来源:OlovPlanthaber弗雷德里克-埃里克森认为,每一个中子都是宝贵的,中子光学效率的每一点提高都对改进实验非常有价值:"通过增加中子的数量和反映更高的中子能量,为包括物理学、化学、生物学和医学在内的各个学科的开拓性实验和突破性发现提供了机会。"事实中子分析利用了中子既能像波又能像粒子的特性。反过来,这些中子可以具有两种不同的自旋。能够使用极化中子(即只有一种特定自旋的中子)主要对磁性研究非常重要。编译自:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1425487.htm手机版:https://m.cnbeta.com.tw/view/1425487.htm

封面图片

科学家发现一种新的原子核类型:190-砹

科学家发现一种新的原子核类型:190-砹在芬兰于韦斯屈莱大学加速器实验室进行的一项实验,成功地产生了一个以前未知的原子核,即190-砹。这种新的同位素是在84Sr光束粒子和银靶原子的聚变中产生的,通过使用RITU反冲分离器的探测器,该同位素在产品中被检测出来。来自于于韦斯屈莱大学物理系的博士生研究员HennaKokkonen资料来源:HennaKokkonen和KalleAuranen新核通过α衰变向更稳定的同位素衰变。α衰变是重核的一种常见衰变模式。来自于于韦斯屈莱大学物理系的博士研究员HennaKokkonen说:"对新核子的研究对于理解原子核的结构和已知物质的极限非常重要。"新的发现是由最近毕业的科学硕士HennaKokkonen做出的。这项研究是她硕士论文的一部分。硕士论文的结果发表在同行评议的杂志上是不常见的,比如《物理评论C》,更不用说它报告了一种新的同位素。"在我的论文中,我分析了其中发现新同位素的实验数据。在我的论文过程和暑期实习期间,我了解了核子光谱学组的工作。现在我很高兴能在该小组工作,争取获得博士学位"。HennaKokkonen五年前从芬兰东南部的Juva搬到于韦斯屈莱市学习物理,现在她作为于韦斯屈莱大学加速器实验室的博士研究员继续学习。...PC版:https://www.cnbeta.com.tw/articles/soft/1367197.htm手机版:https://m.cnbeta.com.tw/view/1367197.htm

封面图片

天文学家通过分析引力波揭开中子星合并的热能秘密

天文学家通过分析引力波揭开中子星合并的热能秘密当两颗中子星相互绕行时,它们会在时空中释放出称为引力波的涟漪。这些涟漪会消耗轨道的能量,直到两颗恒星最终相撞并合并成一个天体。科学家们利用超级计算机模拟探索了不同核物质模型的行为如何影响这些合并后释放的引力波。他们发现,残余物的温度与这些引力波的频率之间存在很强的相关性。下一代探测器将能够区分这些模型。中子星合并后约5毫秒,从上往下看,两种不同模拟中子星合并(上、下)的密度(右)和温度(左)对比图。资料来源:宾夕法尼亚州立大学雅各布-菲尔兹(JacobFields)。科学家利用中子星作为实验室,在地球上无法探测的条件下研究核物质。他们利用目前的引力波探测器来观测中子星合并,了解超密集冷物质的行为方式。然而,这些探测器无法测量恒星合并后的信号。这个信号包含了热核物质的信息。未来的探测器将对这些信号更加敏感。由于它们还能区分不同的模型,这项研究的结果表明,未来的探测器将帮助科学家们建立更好的热核物质模型。这项研究使用THC_M1对中子星合并进行了研究。THC_M1是一种模拟中子星合并的计算机代码,它考虑到了恒星强大引力场造成的时空弯曲以及致密物质中的中微子过程。研究人员通过改变状态方程中的比热容来测试热效应对合并的影响,比热容用于测量中子星物质温度上升一度所需的能量。为了确保结果的稳健性,研究人员以两种分辨率进行了模拟。他们用更近似的中微子处理方法重复了更高分辨率的运行。参考文献《双中子星合并中的热效应》,作者:JacobFields、AviralPrakash、MatteoBreschi、DavidRadice、SebastianoBernuzzi和AndrédaSilvaSchneider,2023年7月31日,《天体物理学杂志通讯》。DOI:10.3847/2041-8213/ace5b2《低三动量传递时中子-碳相互作用中核效应的识别》,2016年2月17日前,《物理评论快报》。DOI:10.1103/PhysRevLett.116.071802这项工作使用了宾夕法尼亚州立大学国家能源研究科学计算中心、匹兹堡超级计算中心和计算与数据科学研究所提供的计算资源。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1404551.htm手机版:https://m.cnbeta.com.tw/view/1404551.htm

封面图片

日本、韩国科学家联手发现未知铀同位素 半衰期超短

日本、韩国科学家联手发现未知铀同位素半衰期超短在最新研究中,日本高能加速器研究机构(KEK)的科学家们填补了这一知识空白,他们确定了19种此类同位素的质量,其中包括全新的铀-241。团队在KEK同位素分离系统设施上开展了最新实验。他们将一束铀-238原子核加速靶入一个铂-198原子核的旋转标靶内,这一过程使多个质子和中子在铀束核和铂靶核之间转移,形成了多个同位素,他们随后使用飞行时间质谱仪确定了这些同位素的质量。研究人员表示,最新研究中使用的技术能帮助他们更好地理解与重元素相关的原子核的形状,有望修改现有建造核电站和核武器的模型,以及描述恒星爆炸行为的理论,最新方法还有助发现更多的新同位素。...PC版:https://www.cnbeta.com.tw/articles/soft/1353467.htm手机版:https://m.cnbeta.com.tw/view/1353467.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人