科学家开发打破常规的新材料 表现得像“导电的培乐多彩泥”

科学家开发打破常规的新材料表现得像“导电的培乐多彩泥”科学家们在研究一类实验性材料时取得了突破性进展,可能塑造出新一代的电子设备。研究人员的创造被比喻为一种导电的"橡皮泥",可以很容易地塑形,他们说这种方式结合了两种特性,无法从理论上解释。PC版:https://www.cnbeta.com/articles/soft/1331033.htm手机版:https://m.cnbeta.com/view/1331033.htm

相关推荐

封面图片

通过模仿白蚁筑巢 科学家运用其基本规则生成新材料

通过模仿白蚁筑巢科学家运用其基本规则生成新材料受白蚁筑巢方式的启发,加州理工学院(Caltech)的科学家们开发了一个框架来设计新材料,模仿隐藏在大自然生长模式中的基本规则。研究人员证明,通过使用这些规则,有可能创造出具有特定可编程性质的材料。PC版:https://www.cnbeta.com/articles/soft/1324623.htm手机版:https://m.cnbeta.com/view/1324623.htm

封面图片

超导研究的新时代 - 科学家们发现"Goldilocks"材料

超导研究的新时代-科学家们发现"Goldilocks"材料这些超导体的基础在于镍,促使许多科学家将这一时期的超导研究称为"镍时代"。在许多方面,镍酸盐与铜酸盐相似,后者是在20世纪80年代发现的,以铜为基础。但是现在,一类新的材料正在发挥作用:在维也纳大学和日本的大学之间的合作中,有可能在计算机上比以前更精确地模拟各种材料的行为。科学家发现了"Goldilocks区",在这个区里,超导性工作得特别好。而这个区域既不是用镍也不是用铜,而是用钯来达到。这可能为超导研究带来一个新的"钯金时代"。这些结果现在已经发表在科学杂志《物理评论快报》上。寻找更高的过渡温度在高温下,超导体的行为与其他导电材料非常相似。但是当它们被冷却到某个"临界温度"以下时,它们就会发生巨大的变化:它们的电阻完全消失,突然间它们可以毫无损失地导电。材料在超导和正常导电状态之间变化的这一极限,被称为"临界温度"。"我们现在已经能够计算出整个系列材料的这个"临界温度"。通过我们在高性能计算机上的建模,我们能够高度准确地预测镍酸盐超导的相图,正如后来的实验所显示的那样,"来自维也纳大学固体物理研究所的KarstenHeld教授说。许多材料只有在绝对零度以上(-273.15°C)才会成为超导体,而其他材料即使在更高的温度下也能保持其超导特性。一种在正常室温和正常大气压力下仍然保持超导性的超导体将从根本上改变我们产生、运输和使用电力的方式。然而,这样一种材料还没有被发现。尽管如此,高温超导体,包括那些杯状物类的超导体,在技术方面发挥着重要作用--例如,在传输大电流或产生极强的磁场方面。铜?镍?还是钯?寻找最佳的超导材料是很困难的:有许多不同的化学元素会出现问题。可以把它们放在不同的结构中,可以添加其他元素的微小痕迹来优化超导性。KarstenHeld教授说:"为了找到合适的候选材料,你必须在量子物理学层面上了解电子在材料中如何相互作用。"这表明,电子的相互作用强度有一个最佳值。相互作用必须是强的,但也不能太强。在这两者之间有一个"黄金地带",使其有可能达到最高的过渡温度。钯酸盐是最佳解决方案这个中等相互作用的黄金区域既不能用铜酸盐也不能用镍酸盐来达到--但人们可以用一种新型的材料来击中靶心:所谓的钯酸盐。"钯在周期表中直接比镍低一行。属性相似,但那里的电子平均离原子核和彼此更远一些,所以电子相互作用更弱,"卡斯滕-海德说。该模型计算显示了如何实现钯数据的最佳过渡温度。"计算结果是非常有希望的,"卡斯滕-赫尔德说。"我们希望,我们现在可以利用它们来启动实验研究。如果我们有一个全新的、额外的钯类材料可用来更好地理解超导性,并创造出更好的超导体,这可能会使整个研究领域向前发展。"...PC版:https://www.cnbeta.com.tw/articles/soft/1356697.htm手机版:https://m.cnbeta.com.tw/view/1356697.htm

封面图片

科学家首次发现能“记住”自己经历的材料

科学家首次发现能“记住”自己经历的材料EPFL的研究人员发现了一种材料,它似乎能“记住”它过去遇到的所有刺激,如电流。这种化合物可以为更好的数据存储和处理提供便利。据悉,这种材料是二氧化钒(VO2),而且它已经知道有一些有趣的特性。通常情况下,它是一种绝缘体,但当把它加热到68°C时,其晶格结构就发生了变化,这意味着它的作用就像一种金属。这可以使它成为窗户或屋顶的一个伟大的涂层,根据天气情况,它可以阻挡来自太阳的热量或让它通过。以前的研究甚至发现,它可以导电而不导热。而现在EPFL的一个团队在二氧化钒的履历中又增加了一个奇怪的特征。研究人员正在研究这种材料在其绝缘和导电状态之间转换的速度,方法是向VO2的一个样本施加电流。电流将材料加热到其过渡点,使其发生变化,然后在电流过后恢复到其初始状态。不过接下来发生的事情却是出乎意料的。当施加第二个电流时,发生相变的速度跟第一个电流的速度不同,这表明该材料对其历史有一种持久的“记忆”。该研究的论文通讯作者ElisonMatioli教授说道:“VO2似乎‘记住’了第一次相变并预见到了下一次相变。我们没有想到会看到这种记忆效应,而且它跟电子状态无关,而是跟材料的物理结构有关。这是一个新的发现:没有其他材料会有这样的表现。”在进一步的实验中,研究小组发现,VO2可以记住以前的刺激,时间长达3小时。他们提出,这种记忆甚至可以持续几天,但他们没有适当的仪器来测量它。研究人员表示,其他材料也可能有同样的能力,找到它们可能会带来一类新的记忆和数据处理设备。PC版:https://www.cnbeta.com/articles/soft/1307609.htm手机版:https://m.cnbeta.com/view/1307609.htm

封面图片

兼具自愈能力和抗菌性 - 科学家开发出能改变人体组织生长的新材料Trpzip

兼具自愈能力和抗菌性-科学家开发出能改变人体组织生长的新材料Trpzip"Trpzip"材料在受到挤压、断裂或从注射器中排出后会发生重塑。资料来源:新南威尔士大学悉尼分校一些人造水凝胶被广泛应用于各种商品中,从食品和化妆品到隐形眼镜和吸水材料,最近还被用于医学研究,以密封伤口和替代受损组织。虽然合成水凝胶可以充分发挥空间填充剂的作用,促进组织生长,但却无法再现真实人体组织的复杂特性。但在今天发表于《自然-通讯》(NatureCommunications)上的一篇研究论文中,新南威尔士大学的科学家们描述了一种新型实验室制造的水凝胶如何表现得像天然组织,并具有许多令人惊讶的特性,这些特性对医疗、食品和制造技术都有影响。新南威尔士大学材料科学与工程学院和化学学院的克里斯-基利安(KrisKilian)副教授说,这种水凝胶材料由非常简单的短肽制成,而短肽是蛋白质的组成部分。基利安教授说:"这种材料具有生物活性,这意味着被包裹的细胞就像生活在天然组织中一样。同时,这种材料还具有抗菌性,这意味着它可以防止细菌感染。这种组合使它成为可能用于医学的材料的最佳选择。这种材料还具有自愈性,这意味着它在受到挤压、断裂或从注射器中排出后会重新塑形。这使它成为三维生物打印的理想材料,或作为一种可注射的药物材料。"AshleyNguyen是新南威尔士大学化学学院的博士生,也是该论文的第一作者,她是在COVID-19大流行期间利用计算机模拟发现这一发现的。Nguyen一直在寻找能够自我组装的分子--即在没有人为干预的情况下自发排列的分子--并偶然发现了"色氨酸链条"的概念。这是一种含有多个色氨酸的氨基酸短链,可促进链条自组装,因而这种材料被命名为"Trpzip"。Nguyen说:"通过计算模拟,我发现了一种可能形成水凝胶的独特肽序列,这让我非常兴奋。我们回到实验室后,我合成了最重要的候选肽,看到它真的形成了凝胶,我非常激动。这种水凝胶的发现有可能成为广泛使用的天然材料的道德替代品。天然水凝胶早已在社会上广泛使用,从食品加工到化妆品,但需要从动物身上采集,这就带来了伦理问题。此外,动物提取的材料也很难用于人体,因为会产生负面的免疫反应。有了Trpzip,我们就有了一种合成材料,它不仅在目前使用天然材料的许多领域显示出潜力,而且在临床研究等其他领域也能胜过天然材料。"为了测试Trpzip在生物医学研究中的可行性,Kilian教授的团队与新南威尔士大学悉尼分校生物医学科学学院的研究员ShafaghWaters博士合作,后者在研究中使用Matrigel(一种从小鼠肿瘤中提取的水凝胶)培养与模拟患者组织。"在研究中使用Matrigel有一些缺点,因为每一批都不一样。化学定义的替代品可能更便宜、更均匀,这将证明对生物医学研究非常有益,"沃特斯博士说。基里安教授指出,天然材料业务是一个价值数十亿美元的产业,他说该团队热衷于探索商业化途径:"我们认为,Trpzip水凝胶和类似材料将为动物源性产品提供更统一、更具成本效益的替代品。如果我们的材料能减少科学研究中使用的动物数量,那将是一个巨大的成果。"下一阶段的研究将涉及与行业和临床科学家合作,测试Trpzip凝胶在组织培养中的效用,并探索能突出其独特动态特性的应用,如三维生物打印和干细胞输送。...PC版:https://www.cnbeta.com.tw/articles/soft/1392947.htm手机版:https://m.cnbeta.com.tw/view/1392947.htm

封面图片

量子突破:科学家开发出操纵奇异材料的新方法

量子突破:科学家开发出操纵奇异材料的新方法上图展示了一种控制材料中量子态的新方法。电场诱导铁电基底发生极化转换,从而产生不同的磁性和拓扑状态。图片来源:MinaYoon、FernandoReboredo、JacquelynDeMink/ORNL、美国能源部拓扑材料发现于20世纪80年代,是一种新的材料阶段,其发现者于2016年获得诺贝尔奖。仅利用电场,ORNL的研究人员就能将普通绝缘体转化为磁性拓扑绝缘体。这种奇特的材料允许电流流过其表面和边缘,而没有能量耗散。电场会引起物质状态的改变。领导这项研究的ORNL的MinaYoon说:"这项研究可以带来许多实际应用,如下一代电子学、自旋电子学和量子计算。"这些物质可能会带来高速、低功耗的电子产品,与目前的硅基电子产品相比,它们能耗更低、运行更快。ORNL的科学家们在《二维材料》(2DMaterials)上发表了他们的研究成果。...PC版:https://www.cnbeta.com.tw/articles/soft/1383317.htm手机版:https://m.cnbeta.com.tw/view/1383317.htm

封面图片

科学家开发出新型纳米材料 带来控制火灾的新方法

科学家开发出新型纳米材料带来控制火灾的新方法高温火焰对于生产多种材料至关重要。然而,控制火焰及其与目标材料的相互作用是一项挑战。科学家们现在已经开发出一种方法,利用分子薄保护层来控制火焰的热量与材料的相互作用--驯服火焰,让用户能够精细调整加工材料的特性。PC版:https://www.cnbeta.com.tw/articles/soft/1377999.htm手机版:https://m.cnbeta.com.tw/view/1377999.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人