研究人员证明"自旋量子比特"可以存储数据长达两毫秒 比之前的基准长100倍

研究人员证明"自旋量子比特"可以存储数据长达两毫秒比之前的基准长100倍这一成就比之前同一量子处理器中所谓的"相干时间"的基准要长100倍,相干时间是指量子比特在日益复杂的计算中可以被操纵的时间。"更长的相干时间意味着你有更多的时间来存储你的量子信息--这正是你在进行量子操作时需要的,"博士生阿曼达-赛德豪斯女士说,她在理论量子计算方面的工作促成了这项成就。"相干时间基本上是告诉你,在你失去你的量子比特中的所有信息之前,你可以在你想做的任何算法或序列中做多久的所有操作。"IngvildHansen和AmandaSeedhouse在进行量子计算实验的实验室里在量子计算中,你能保持运动的自旋越多,信息在计算过程中就越有可能得到保持。当自旋量子比特停止旋转时,计算就会崩溃,每个量子比特所代表的数值都会丢失。2016年,新南威尔士大学的量子工程师通过实验证实了扩展一致性的概念。让事情变得更加困难的是,未来的工作量子计算机如果要解决人类的一些最困难的问题,例如寻找有效的疫苗、模拟天气系统和预测气候变化的影响,就需要跟踪数百万个量子比特的值。去年年底,新南威尔士大学的同一个团队解决了一个困扰工程师几十年的技术问题,即如何在不产生更多热量和干扰的情况下操纵数百万的量子比特。该研究小组没有增加数以千计的微小天线来用磁波控制数以百万计的电子,而是想出了一个办法,通过引入一种叫做介电谐振器的晶体,只用一根天线来控制芯片中的所有量子比特。他们在《科学进展》杂志上发表了这些发现。这解决了空间、热量和噪音的问题,这些问题会随着越来越多的量子比特的上线而不可避免地增加,当量子比特不仅像传统的二进制计算机那样代表1或0,而且同时代表两者时,利用一种被称为量子叠加的现象,就可以进行令人费解的计算。全局控制与个别控制然而,这一概念验证的成就仍有一些挑战需要解决。首席研究员IngvildHansen女士与Seedhouse女士一起,在《物理评论B》、《物理评论A》和《应用物理评论》杂志上发表的一系列论文中解决了这些问题。能够只用一根天线控制数百万个量子比特是一个很大的进步。但是,虽然一次控制数百万个量子比特是一个伟大的壮举,但工作中的量子计算机还需要对它们进行单独操纵。如果所有的自旋量子比特都以几乎相同的频率旋转,它们就会有相同的数值。我们如何才能单独控制它们,使它们在计算中代表不同的数值?"首先我们从理论上表明,我们可以通过连续旋转量子比特来提高相干时间,"汉森女士说。"如果你想象一个马戏团的表演者旋转盘子,当它们还在旋转时,表演可以继续。以同样的方式,如果我们连续驱动量子比特,它们可以保持信息更长时间。我们表明,这种'穿衣'的量子比特的相干时间超过230微秒[2.3亿分之1秒]"。在该团队表明相干时间可以用所谓的'穿衣'量子比特来延长后,下一个挑战是使协议更加稳健,并表明全局控制的电子也可以被单独控制,以便它们可以保持复杂计算所需的不同数值。这是通过创建团队称之为"SMART"的量子比特协议来实现的--正弦波调制、始终旋转和定制。他们没有让量子比特转圈,而是操纵它们像节拍器一样来回摇晃。然后,如果对任何一个量子比特单独施加一个电场--使其脱离共振--它就可以进入与它的邻居不同的节奏,但仍以同样的节奏运动。"把它想象成两个荡秋千的孩子,他们几乎是同步前进和后退的,"赛德豪斯女士说。"如果我们给他们中的一个人推一把,我们可以让他们在相反的两端达到弧线的终点,所以当另一个人现在是1的时候,一个人可以是0。"其结果是,不仅可以在全局控制(磁力)的影响下单独(电子)控制一个量子比特,而且如前所述,相干时间大大延长,适合于量子计算。"我们已经展示了一种简单而优雅的方式,可以同时控制所有的量子比特,而且还带有更好的性能,"该团队的高级研究人员之一杨亨利博士说。"SMART协议将是全面量子计算机的一条潜在路径。"该研究团队由新南威尔士大学分拆出来的公司Diraq的首席执行官和创始人AndrewDzurak教授领导,该公司正在开发可以使用标准硅芯片制造的量子计算机处理器。接下来的步骤"汉森女士说:"我们的下一个目标是,在我们的实验论文中用一个量子位展示了我们的概念证明之后,用两个量子位的计算来证明它的有效性。"在那之后,我们想表明我们也可以为少数几个量子比特做这件事,以表明该理论在实践中被证明。"...PC版:https://www.cnbeta.com.tw/articles/soft/1332017.htm手机版:https://m.cnbeta.com.tw/view/1332017.htm

相关推荐

封面图片

克服量子的限制 研究人员找到一种控制电子自旋的新方法

克服量子的限制研究人员找到一种控制电子自旋的新方法罗切斯特大学的一个研究小组在物理学副教授约翰-尼科尔的领导下,在《自然-物理学》杂志上发表了一篇论文,概述了操纵硅量子点--微小的、纳米级的半导体,具有显著特性的电子自旋的新方法,作为操纵量子系统信息的一种方式。尼科尔说:"这项研究的结果为基于半导体量子点中的电子自旋的量子比特的相干控制提供了一个有希望的新机制,这可能为开发一个实用的硅基量子计算机铺平道路。"罗切斯特大学的研究人员通过控制硅量子点中电子的自旋,开发了一种在量子系统中操纵信息的新方法。硅中的电子在其自旋(向上和向下箭头)和谷态(蓝色和红色轨道)之间经历了一种被称为自旋-谷态耦合的现象。当研究人员对硅中的电子施加电压(蓝色光芒)时,他们利用自旋-谷耦合效应,可以操纵自旋和谷态,控制电子自旋。资料来源:罗切斯特大学插图/MichaelOsadciw使用量子点作为量子比特一台普通计算机由数十亿个晶体管组成,称为比特。另一方面,量子计算机是基于量子比特,也被称为量子比特。与普通的晶体管不同,它可以是"0"(关闭)或"1"(打开),而量子比特受量子力学规律的支配,可以同时是"0"和"1"。科学家们早就考虑使用硅量子点作为量子比特;控制量子点中电子的自旋将提供一种操纵量子信息传输的方法。量子点中的每个电子都有内在的磁性,就像一个小小的条形磁铁。科学家把这称为"电子自旋"--与每个电子相关的磁矩--因为每个电子是一个带负电的粒子,其行为就像它在快速旋转一样,而正是这种有效的运动引起了磁性。电子自旋是在量子计算中传输、存储和处理信息的一个有希望的候选者,因为它提供了长的相干时间和高的门控保真度,并且与先进的半导体制造技术兼容。量子比特的相干时间是指量子信息因与噪声环境相互作用而丢失之前的时间;长相干时间意味着执行计算的时间更长。高的门控保真度意味着研究人员要进行的量子操作会完全按照他们的要求进行。然而,使用硅量子点作为量子比特的一个主要挑战是控制电子自旋。控制电子自旋控制电子自旋的标准方法是电子自旋共振(ESR),它涉及到对量子比特施加振荡的射频磁场。然而,这种方法有几个局限性,包括需要在低温环境下产生和精确控制振荡磁场,而大多数电子自旋量子比特是在低温环境下工作的。通常情况下,为了产生振荡磁场,研究人员通过电线发送电流,这就会产生热量,从而干扰低温环境。尼科尔和他的同事概述了一种控制硅量子点中电子自旋的新方法,该方法不依赖于振荡电磁场。该方法基于一种被称为"自旋-谷粒耦合"的现象,当硅量子点中的电子在不同的自旋和谷粒状态之间转换时,就会发生这种现象。电子的自旋态指的是它的磁性,而谷态指的是与电子的空间轮廓有关的另一种属性。研究人员应用一个电压脉冲来利用自旋-谷耦合效应,操纵自旋和谷态,控制电子自旋。"这种通过自旋-谷耦合进行相干控制的方法,可以实现对量子比特的普遍控制,并且可以在不需要振荡磁场的情况下进行,而振荡磁场是ESR的一个限制,"尼科尔说。"这使我们有了一条新的途径,可以使用硅量子点来操纵量子计算机中的信息。"...PC版:https://www.cnbeta.com.tw/articles/soft/1346405.htm手机版:https://m.cnbeta.com.tw/view/1346405.htm

封面图片

研究人员利用电子和空穴自旋实现了精确的量子比特控制和相互作用

研究人员利用电子和空穴自旋实现了精确的量子比特控制和相互作用巴塞尔大学在量子比特技术方面取得的进展为可扩展量子计算带来了希望,它利用电子和空穴自旋实现了精确的量子比特控制和相互作用。全世界的研究人员都在探索各种量子比特技术,对实用量子计算机的追求正如火如荼地进行着。尽管做出了大量努力,但对于哪种类型的量子比特最能最大限度地发挥量子信息科学的潜力,人们仍未达成共识。量子比特是量子计算机的基础。它们负责处理、传输和存储数据。有效的量子位必须可靠地存储和快速处理信息。这就要求外部系统能够准确控制大量量子比特之间稳定、迅速的相互作用。当今最先进的量子计算机只有几百个量子比特。这就限制了它们执行传统计算机已经能够完成的计算,而且往往能更高效地完成。要想推动量子计算的发展,研究人员必须找到一种在单个芯片上容纳数百万量子比特的方法。电子和空穴为了解决数千个量子比特的排列和连接问题,巴塞尔大学和NCCRSPIN的研究人员依靠一种利用电子或空穴自旋(固有角动量)的量子比特。空穴本质上是半导体中缺失的电子。空穴和电子都具有自旋,可采用两种状态之一:向上或向下,类似于经典比特中的0和1。与电子自旋相比,空穴自旋的优势在于它可以完全由电子控制,无需在芯片上安装微型磁铁等额外元件。两个相互作用的空穴自旋量子比特。当一个空穴(洋红色/黄色)从一个位点隧穿到另一个位点时,它的自旋(箭头)会因所谓的自旋轨道耦合而旋转,从而导致周围气泡所描述的各向异性相互作用。资料来源:NCCRSPIN2022年,巴塞尔物理学家证明,现有电子设备中的空穴自旋可以被捕获并用作量子比特。这些"FinFET"(鳍式场效应晶体管)内置于现代智能手机中,并通过广泛的工业流程生产出来。现在,安德烈亚斯-库尔曼(AndreasKuhlmann)博士领导的团队首次成功地在这种装置中实现了两个量子比特之间可控的相互作用。量子计算机需要"量子门"来执行计算。量子门"代表着操纵量子比特并将它们相互耦合的操作。研究人员在《自然-物理》杂志上报告说,他们能够将两个量子比特耦合起来,并根据其中一个量子比特的自旋状态,使另一个量子比特的自旋发生受控翻转--这就是所谓的受控自旋翻转。"孔自旋使我们能够创建既快速又高保真的双量子比特门。"库尔曼说:"现在,这一原理还使我们有可能将更多的量子位对耦合在一起。"两个自旋量子比特的耦合基于它们之间的交换相互作用,这种相互作用发生在两个静电相互作用的无差别粒子之间。令人惊奇的是,空穴的交换能不仅在电学上是可控的,而且具有很强的各向异性。这是自旋轨道耦合的结果,意味着空穴的自旋状态受其空间运动的影响。为了在模型中描述这一观察结果,巴塞尔大学和NCCRSPIN的实验物理学家和理论物理学家联手合作。库尔曼说:"各向异性使得双量子比特门成为可能,而无需在速度和保真度之间进行通常的权衡。基于空穴自旋的量子比特不仅可以利用硅芯片久经考验的制造工艺,还具有高度的可扩展性,并在实验中被证明是快速和稳健的。这项研究强调,这种方法在开发大规模量子计算机的竞赛中大有可为。"编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1432321.htm手机版:https://m.cnbeta.com.tw/view/1432321.htm

封面图片

量子初创企业Atom Computing宣布率先突破1000量子比特

量子初创企业AtomComputing宣布率先突破1000量子比特首席执行官罗布-海斯(RobHays)说,快速扩展是AtomComputing独特的原子阵列技术的一个关键优势。海斯说:"这种数量级的飞跃--在一代人的时间内从100个量子比特到1000多个量子比特--表明我们的原子阵列系统正在迅速超越更成熟的量子比特模式。扩展到大量量子比特对于容错量子计算至关重要,这也是我们从一开始就关注它的原因。我们正在与合作伙伴密切合作,探索能够利用这些更大规模系统的近期应用。"MoorInsights&Strategy公司副总裁兼首席分析师保罗-史密斯-古德森(PaulSmith-Goodson)说,1000多比特的里程碑使AtomComputing成为容错系统竞赛中的有力竞争者。他说:"令人印象深刻的是,成立仅五年的AtomComputing能够与拥有更多资源的大公司抗衡,并保持自己的优势。该公司一直专注于扩展其原子阵列技术,并正在取得快速进展。"能够克服计算过程中的错误并提供准确结果的容错量子计算机将需要数十万甚至数百万个物理量子比特以及其他关键能力,包括:相干时间长。该公司已经实现了创纪录的相干时间,证明其量子比特可以存储量子信息40秒。中电路测量。Atom演示了在计算过程中测量特定量子比特的量子态,并在不干扰其他量子比特的情况下检测某些类型的错误。高保真度。能够持续、准确地控制量子比特,减少计算过程中出现的错误。纠错。实时纠错的能力。逻辑量子比特。实施算法和控制,将大量物理量子比特组合成"逻辑量子比特",即使出现错误也能产生正确的结果。海斯说,AtomComputing将继续利用其下一代系统实现这些功能,这将为其合作伙伴提供新的机遇。沃达丰量子研究集群负责人GuenterKlas说:"我们欢迎像AtomComputing这样用中性原子方法构建量子计算机的创新。归根结底,我们希望量子算法能够带来经济上的变化并带来新的机遇,为此,可扩展的硬件、高保真和长相干时间是非常有前景的要素"。AtomComputing的战略合作伙伴EntropicaLabs首席执行官TommasoDemarie说:"开发出1000多量子比特的量子技术标志着AtomComputing团队和整个行业取得了非凡的成就。随着计算能力的增强,我们现在可以深入研究纠错方案的复杂领域,设计和实施各种策略,为更可靠、可扩展的量子计算系统铺平道路。Entropica热衷于与AtomComputing合作,因为我们创建的软件可以充分利用其大规模量子计算机的优势。"AtomComputing目前正与企业、学术界和政府用户合作开发应用,并为系统预留时间,该系统将于2024年投入使用。欲了解有关AtomComputing的更多信息,请访问:https://atom-computing.com...PC版:https://www.cnbeta.com.tw/articles/soft/1392197.htm手机版:https://m.cnbeta.com.tw/view/1392197.htm

封面图片

ETH研究人员利用静态电场和磁场成功捕获离子 并用其进行量子运算

ETH研究人员利用静态电场和磁场成功捕获离子并用其进行量子运算在离子阱中使用振荡电磁场限制了量子计算机目前可实现的量子比特数量。现在,苏黎世联邦理工大学的研究人员在一个微加工芯片上制造出了一个离子阱,只使用静态场--电场和磁场--就能在其中进行量子运算。在这种阱中,离子可以向任意方向传输,一个芯片上可以安装多个这样的阱。ETH研究人员的实验装置。阱芯片位于银色穹顶下方的容器内,其中的透镜可以捕捉到被困离子发出的光。图片来源:苏黎世苏黎世联邦理工大学/PavelHrmo原子中电子的能量状态遵循量子力学定律:它们不是连续分布的,而是被限制在某些定义明确的值中--这也被称为量子化。这种量子化状态是量子比特(qubit)的基础,科学家们希望用它来制造极其强大的量子计算机。为此,原子必须冷却并被困在一个地方。强捕获可以通过电离原子来实现,也就是给原子带上电荷。然而,电磁学的一个基本定律指出,时间恒定的电场无法捕获单个带电粒子。另一方面,通过加入一个振荡电磁场,就可以得到一个稳定的离子阱,也称为保罗阱。通过这种方法,近年来已经可以用离子阱制造出包含约30个量子比特的量子计算机。然而,这种技术无法直接实现更大的量子计算机。振荡场使得很难在单个芯片上组合多个这样的阱,而且使用振荡场会使阱发热--系统越大,问题越严重。同时,离子的传输仅限于沿着交叉连接的线性部分通过。在二维平面上移动单个受困离子并用激光束照射,研究人员就能制作出ETH的标志。图像是通过多次重复传输序列的平均值形成的。资料来源:苏黎世苏黎世联邦理工大学/量子电子研究所带磁场的离子阱由乔纳森-霍姆(JonathanHome)领导的苏黎世苏黎世联邦理工大学研究小组现已证明,适合量子计算机使用的离子阱也可以使用静态磁场而不是振荡磁场来构建。在这些带有额外磁场的静态阱(称为潘宁阱)中,未来超级计算机的任意传输和必要操作都得以实现。研究人员最近在科学杂志《自然》上发表了他们的研究成果。博士生ShreyansJain说:"传统上,当人们想要俘获非常多的离子进行精密实验时,就会使用潘宁陷阱,但无需对它们进行单独控制,相比之下,在基于离子的小型量子计算机中,则使用保罗陷阱。"苏黎世联邦理工大学的研究人员提出的利用潘宁陷阱制造未来量子计算机的想法最初遭到了同事们的质疑。原因有很多:潘宁陷阱需要极强的磁铁,而磁铁非常昂贵且体积庞大。此外,以前实现的潘宁陷阱都非常对称,而ETH使用的芯片级结构却违反了这一点。将实验置于大型磁铁中,很难引导控制量子比特所需的激光束进入陷阱,而强磁场会增加量子比特能态之间的间距。这反过来又使控制激光系统变得更加复杂:不再需要一个简单的二极管激光器,而是需要几个锁相激光器。使用过的潘宁阱中间部分示意图。通过不同电极(黄色)产生的电场和磁场的组合,离子(红色)被俘获。资料来源:苏黎世苏黎世联邦理工大学/量子电子学研究所任意方向的传输然而,霍姆和他的合作者们并没有被这些困难吓倒,他们在布伦瑞克物理技术苏黎世联邦理工大学(Physikalisch-TechnischeBundesanstaltinBraunschweig)制造的超导磁体和带有多个电极的微加工芯片的基础上,建造了一个潘宁陷阱。使用的磁铁能提供3特斯拉的磁场,比地球磁场强近10万倍。苏黎世的研究人员利用低温冷却镜系统,成功地将必要的激光穿过磁铁照射到离子上。它们的努力终于有了回报:一个被捕获的离子可以在捕获器中停留数天,现在可以在芯片上任意移动,通过控制不同的电极"如飞"连接各点--这是以前基于振荡场的旧方法无法实现的。由于诱捕不需要振荡场,因此可以在一块芯片上安装许多诱捕器。作为博士生参与实验的托比亚斯-赛格瑟(TobiasSägesser)说:"一旦充好电,我们甚至可以将电极与外界完全隔离,从而研究离子受外界影响的干扰程度。"质子的相干控制研究人员还证明,在保持量子力学叠加的同时,还可以控制被困离子的量子比特能态。相干控制既适用于离子的电子(内部)状态和(外部)量子化振荡状态,也适用于内部和外部量子态的耦合。后者是产生纠缠态的先决条件,而纠缠态对量子计算机非常重要。下一步,霍姆希望在同一芯片上的相邻潘宁陷阱中俘获两个离子,从而证明也可以进行多个量子比特的量子操作。这将是利用潘宁陷阱中的离子实现量子计算机的最终证明。教授还考虑了其他应用。例如,由于新陷阱中的离子可以灵活移动,它们可以用来探测表面附近的电场、磁场或微波场。这就为利用这些系统作为表面特性的原子传感器提供了可能性。编译自:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1425777.htm手机版:https://m.cnbeta.com.tw/view/1425777.htm

封面图片

研究人员开发出一种利用磁子传输量子信息的新方法

研究人员开发出一种利用磁子传输量子信息的新方法HZDR的研究人员成功地在磁盘中产生了类似于波的激发--即所谓的磁子--来专门操纵碳化硅中原子大小的量子比特。这为量子网络中的信息传输开辟了新的可能性。图片来源:HZDR/MauricioBejarano为了满足这一需求,德累斯顿-罗森多夫亥姆霍兹中心(HZDR)的一个研究小组现在推出了一种传输量子信息的新方法:该小组通过利用磁子(磁性材料中的波状激起)的磁场来操纵量子比特(即所谓的量子比特),磁子发生在微观磁盘中。研究人员在《科学进展》(ScienceAdvances)杂志上发表了他们的研究成果。建造可编程的通用量子计算机是当代最具挑战性的工程和科学研究之一。这种计算机的实现为物流、金融和制药等不同行业领域带来了巨大潜力。然而,由于量子计算机技术在存储和处理信息时存在固有的脆弱性,因此阻碍了实用量子计算机的建造。量子信息被编码在量子比特中,而量子比特极易受到环境噪声的影响。微小的热波动(几分之一度)就可能完全破坏计算。这促使研究人员将量子计算机的功能分布在不同的独立构件中,以努力降低出错率,并利用这些构件的互补优势。"然而,这就带来了一个问题,即如何在模块之间传输量子信息,使信息不会丢失,"HZDR研究员、该刊物第一作者毛里西奥-贝哈拉诺(MauricioBejarano)说。"我们的研究正是在这个特定的利基上,在不同的量子模块之间传输通信。"目前,传输量子信息和寻址量子比特的既定方法是通过微波天线。这是Google和IBM在其超导芯片中使用的方法,也是在这场量子竞赛中处于领先地位的技术平台。"而我们则是通过磁子来寻址量子比特。磁子可被视为穿过磁性材料的磁激发波。这样做的好处是,磁子的波长在微米范围内,比传统微波技术的厘米波短得多。因此,磁子的微波足迹在芯片中花费的空间更少。HZDR小组研究了磁子与碳化硅晶体结构中硅原子空位形成的量子比特的相互作用,碳化硅是一种常用于大功率电子器件的材料。这类量子比特通常被称为自旋量子比特,因为量子信息是由空位的自旋状态编码的。但是,如何利用磁子来控制这类量子比特呢?"通常情况下,磁子是通过微波天线产生的。"贝哈拉诺解释说:"这就带来了一个问题,即很难将来自天线的微波驱动与来自磁子的微波驱动分离开来。"为了将微波从磁子中分离出来,HZDR团队利用了一种在镍铁合金微观磁盘中可以观察到的奇特磁现象。"由于非线性过程,磁盘内的一些磁子具有比天线驱动频率低得多的频率。我们只用这些频率较低的磁子来操纵量子比特"。研究小组强调,他们还没有进行任何量子计算。不过,他们表明,完全用磁子处理量子比特从根本上是可行的。"迄今为止,量子工程界还没有意识到磁子可以用来控制量子比特,"Schultheiß强调说。"但我们的实验证明,这些磁波确实可以派上用场"。为了进一步发展他们的方法,研究小组已经在为未来的计划做准备:他们想尝试控制几个间距很近的单个量子比特,让磁子介导它们的纠缠过程--这是进行量子计算的先决条件。他们的设想是,从长远来看,磁子可以被直接电流激发,其精确度可以达到在量子比特阵列中专门针对单个量子比特。这样就可以将磁子用作可编程量子总线,以极其有效的方式寻址量子比特。虽然未来还有大量工作要做,但该研究小组的研究强调,将磁子系统与量子技术相结合,可以为未来开发实用量子计算机提供有益的启示。编译自:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1424810.htm手机版:https://m.cnbeta.com.tw/view/1424810.htm

封面图片

量子技术新突破:科学家们延长了Qubit的寿命

量子技术新突破:科学家们延长了Qubit的寿命科学家们已经证明,他们可以通过改变周围晶体的结构使其不那么对称来延长分子量子比特的寿命。这种不对称性可以保护量子比特不受噪音影响,使其保持信息的时间比放在对称结构中要长五倍。资料来源:麻省理工学院/丹-劳伦扎研究小组获得了10微秒的相干时间(量子比特保持信息的时间),即百万分之一秒,相比之下,分子量子比特在对称晶体主机中的相干时间为2微秒。这些发现发表在《物理评论X》杂志上,由来自麻省理工学院、美国能源部(DOE)阿贡国家实验室、西北大学、芝加哥大学和格拉斯哥大学的一组科学家完成。由阿贡管理的美国能源部国家量子科学研究中心(Q-NEXT)帮助资助了这项研究。背景量子比特是量子信息的基本单位,是传统计算比特的量子类似物。在噪声或干扰信号破坏信息之前,量子比特只能保持一段时间。延长信息保持稳定的时间长度,即所谓的相干时间,是量子信息科学的最大挑战之一。量子比特有不同的类型,其中一个是实验室设计的分子。分子量子比特是模块化的,这意味着它们可以很容易地从一个环境中移动并放置在另一个环境中。相比之下,其他类型的量子比特,如那些由半导体制成的量子比特,是高度固定在其环境中的。为什么这很重要较长的相干时间使得量子比特在计算、长距离通信以及医学、导航和天文学等领域的传感等应用中更加有用。因为相干时间可以通过改变量子比特的外壳或将其置于相对于外壳更不对称的位置来延长,所以不需要改变量子比特本身来实现更长的寿命。只需改变它的情况。麻省理工学院F.G.Keyes化学教授、论文合著者丹娜·弗里德曼说:"分子化学使我们能够更换承载量子比特的晶体材料,并修改量子比特本身。加入这种新的控制水平是非常有用的。"这项研究的共同作者,格拉斯哥大学的萨姆·贝里斯说:"这种变化只是通过改变宿主分子上的单个原子来实现的,这是你能得到的最小的变化之一,它引起了相干时间的五倍增强,这是一个很好的证明,你可以通过分子获得这种原子级的可调性。化学技术本质上提供了单原子水平的控制,这是很多现代技术中的一个梦想。"这种对称性破坏技术的有效性意味着分子量子比特可以在各种各样的环境中运行,甚至是那些不能减少噪音的环境。弗里德曼说:"我们已经创造了一个新的手柄来修改分子系统中的相干性,"。"这种新发现的化学控制宿主环境的能力为分子量子比特的目标应用开辟了新的空间。""虽然与一些系统相比,10微秒可能听起来不是非常长,但我们没有做任何事情来减少噪声源。在我们测量的环境中,噪声是非常显著的。因此,即使那里有噪声,量子比特基本上看不到它,而我们为什么不直接删除噪声源呢?在实际情况下,并不总是能够在一个超纯的环境中工作。因此,拥有一个能在嘈杂环境中内在运行的量子比特可能是有利的。"细节该团队的长寿命量子比特是由附着在碳基分子上的铬基离子构成的。对于一个分子量子轨道来说,噪音的主要来源是其周围的磁场。磁场往往会扰乱量子比特的能级,而这些能级是对信息的编码。晶体的不对称性使量子比特免受潜在的破坏性磁场的影响,信息被保存得更久。除了改善量子比特的特性外,该团队还开发了一种数学工具,可以根据宿主晶体的结构准确预测任何分子量子比特的相干时间。"这对我们来说是令人难以置信的,非常令人兴奋的事情之一是这些系统可以在很短的时间内取得多大的进步,以及对宿主矩阵的一些修改可以获得相当大的改进。"贝里斯说。"这是一个重要的发展。能够精确调整一个量子比特的环境是分子量子比特的一个独特优势。"Q-NEXT主任和论文共同作者DavidAwschalom说,他也是阿贡高级科学家、研究和基础设施副院长、芝加哥大学普利兹克分子工程学院分子工程和物理学Liew家族教授,以及芝加哥量子交易所主任。"知道我们可以通过工程设计其环境来延长量子比特的寿命,为跨量子计算、传感和通信的应用开辟了新的可能性。"...PC版:https://www.cnbeta.com.tw/articles/soft/1333795.htm手机版:https://m.cnbeta.com.tw/view/1333795.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人