斯坦福研发新的充电方法 可使锂电池组寿命至少延长20%

斯坦福研发新的充电方法可使锂电池组寿命至少延长20%无论哪种情况,平均单体电池的寿命比平均电池组的寿命长,而正是这些脆弱的电池使整个电池组工作效率低下。斯坦福大学Doerr可持续发展学院能源科学工程助理教授西蒙娜-奥诺里(SimonaOnori)说:"如果不妥善处理,电池单元之间的异质性会损害电池组的寿命、健康和安全,并诱发电池组的早期故障,"她是一项新研究的作者,旨在使锂电池组的使用寿命更长。快速充电和放电事件对电池单元来说是一种压力,虽然它们被设计成可以承受这种压力,但这些是较弱的电池受到影响和恶化最快的时刻。因此,斯坦福大学的研究小组想知道,以同样的速度给所有电池单元充电的标准技术是否会加速电池的损坏。研究人员设计了一个计算机模型,在一个加速的时间框架内测试他们的理论,结果他们认为这是一个前所未有的模拟细节水平。他们试图准确地代表电池的物理和化学状态,以及在其整个生命周期中与一系列压力有关的变化,包括在几秒钟内发生的变化,一直到可能需要几个月或几年的其他变化。Onori说:"据我们所知,以前的研究没有使用过我们创建的那种高保真度、多时间尺度的电池模型。"利用这个模型,他们进行了一些模拟,比较了标准的、设定速率的充电方法和其他方法,其中每个电池的容量作为一个指标,说明它能承受多少充电功率。这里的理论是,只有最强壮的电芯应该受到最高的压力;已经开始提前退化的电芯不管是什么原因都应该被更温和地对待,希望能延缓它们最终的衰退。该团队发现,通过单独设置每个电池的充电速率,他们可以最大限度地减少温度上升和电池退化,以至于这些电池组可以比均匀充电的电池多处理至少20%的充电/放电周期--甚至使用频繁的快速充电。但缺点也是相当明显的;如果你正在给你的电动车或手机电池快速充电,当然希望它尽可能快地充电,这样你就可以回到你正在做的任何事情上,在这样的模式下,你的电池中一定数量的电池根本不会像平时那样快速充电。如果你把你的电池看作是或多或少的一次性物品,而你的汽车是每隔几年就会被更换的东西,很多消费者不会关心他们是否在加速他们电池组的死亡,因为这是厂家和维修方的问题。电池组中的大多数电池通常情况都很好,有能力进行快速充电。因此,在这种充电模式下,在快速充电器上充电半小时后,充电状态的差别可能不会很大,如果电池可以被"哄骗"到更长的使用寿命,这对每个人来说都是更好的,因为提前更换的锂电池预计在未来几十年将对全球脱碳工作造成压力。研究人员说,他们的充电模型可以很容易地通过现有的电动汽车设计推出,或用于指导下一代电池管理系统的开发。他们还建议,同样的模型可以应用于放电周期,对较弱的电池要求较少,对较强的电池要求较多,以进一步提高任何受到高应力负载的电池组的寿命。事实上,该研究的作者之一现在在eVTOL开发商ArcherAviation担任电池研究员。"锂离子电池已经在很多方面改变了世界,"Onori说。"重要的是,我们要尽可能多地从这项变革性技术及其后续技术中得到好处。这项研究发表在《IEEE控制系统技术期刊》上。了解更多:https://news.stanford.edu/2022/11/07/longer-lasting-battery-make-cell/...PC版:https://www.cnbeta.com.tw/articles/soft/1332125.htm手机版:https://m.cnbeta.com.tw/view/1332125.htm

相关推荐

封面图片

研究人员找到抑制锂电池枝晶生长的方法 提高其效率、安全性与寿命

研究人员找到抑制锂电池枝晶生长的方法提高其效率、安全性与寿命枝晶是锂离子电池在快速充电过程中可能出现的一种现象。当锂离子积聚在电池负极表面而不是夹杂在负极中时,就会形成一层金属锂,并持续增长成树枝形状,最终刺破隔膜,这会损坏电池,缩短其使用寿命,并导致短路,从而引发火灾和爆炸。XuekunLu博士解释说,通过优化石墨负极的微观结构,可以显著减少锂镀层。石墨负极由随机分布的微小颗粒组成,微调颗粒和电极形态以获得均匀的反应活性并降低局部锂饱和度是抑制锂电镀和提高电池性能的关键。石墨负极充电过程中的锂浓度分布用颜色表示。图片来源:XuekunLuetal/NatureCommunications"我们的研究发现,在不同条件下,石墨颗粒的锂化机制各不相同,这取决于它们的表面形态、大小、形状和取向。这在很大程度上影响了锂的分布和枝晶的倾向,"Lu博士说。"在开创性的三维电池模型的帮助下,我们可以捕捉到锂镀层何时何地开始形成,以及锂镀层的生长速度。这是一项重大突破,可能会对未来的电动汽车产生重大影响。"这项研究加深了人们对快速充电过程中锂在石墨颗粒内重新分布的物理过程的理解,为开发先进的快速充电协议提供了新的见解。这些知识可帮助实现高效的充电过程,同时最大限度地降低锂镀层的风险。除了加快充电时间外,研究还发现,改进石墨电极的微观结构可以提高电池的能量密度。这意味着电动汽车一次充电可以行驶更远的距离。这些发现是电动汽车电池开发领域的重大突破。它们可以使电动汽车充电更快、寿命更长、更安全,从而成为对消费者更具吸引力的选择。...PC版:https://www.cnbeta.com.tw/articles/soft/1379241.htm手机版:https://m.cnbeta.com.tw/view/1379241.htm

封面图片

锂电池循环寿命和快充性能有望大幅提升

锂电池循环寿命和快充性能有望大幅提升近日,荷兰代尔夫特理工大学的MarnixWagemaker教授团队与中核集团原子能院核物理研究所中子散射团队合作,在国际权威期刊《自然》上发表了锂离子电池领域的最新研究成果。该成果或将大幅提升锂电池循环寿命和快充性能,标志着中核集团重大科研设施中国先进研究堆全面开放应用取得重要进展。该研究围绕有序层状氧化物开展,这是目前锂离子电池中最重要的正极材料之一。在进行深度充电时,该结构框架容易受到晶格应力、结构或机械化学降解的影响,使得电池容量急剧下降,从而导致电池寿命缩短。(科技日报)

封面图片

新的充电算法可将锂离子电池的寿命延长一倍

新的充电算法可将锂离子电池的寿命延长一倍柏林亥姆霍兹中心(HZB)和柏林洪堡大学的一个欧洲研究小组开发出一种替代充电方案,使锂离子电池的寿命比现在更长。研究结果表明,通过改变充电器向电解质材料输送电流的方式,电池在经过数百次放电-充电循环后仍能保持较高的能量容量。锂离子电池是一种结构紧凑、坚固耐用的能源容器,已成为人们的宠儿。电动汽车和电子设备都依赖于它们,但随着电解质穿过分隔阳极和阴极的薄膜,它们的容量会逐渐降低。目前最好的商业级锂离子电池使用的电极由一种名为NMC532的化合物和石墨制成,使用寿命长达8年。传统的充电方式是使用恒定电流(CC)的外部电能。研究分析了使用CC充电时电池样品的情况,发现阳极的固体电解质界面(SEI)"明显变厚"。此外,他们还在NMC532和石墨电极结构中发现了更多裂纹。较厚的SEI和电极上较多的裂缝意味着锂离子电池容量的显著损失。因此,研究人员开发了一种基于脉冲电流(PC)的充电协议。使用新的PC协议对电池充电后,研究小组发现SEI接口变薄了很多,电极材料发生的结构变化也更少。研究小组利用欧洲两个领先的粒子加速同步加速器设施"BESSYII"和"PETRAIII"进行了脉冲电流充电实验。他们发现,PC充电可促进石墨中锂离子的"均匀分布",从而减少石墨颗粒中的机械应力和裂纹。该方案还能抑制NMC532阴极的结构退化。研究表明,方波电流的高频脉冲效果最好。测试表明,PC充电可使商用锂离子电池的使用寿命延长一倍,容量保持率达到80%。这项研究的共同作者、柏林工业大学教授JuliaKowal博士说:"脉冲充电可以在电极材料和界面的稳定性方面带来许多优势,并大大延长电池的使用寿命。"...PC版:https://www.cnbeta.com.tw/articles/soft/1427548.htm手机版:https://m.cnbeta.com.tw/view/1427548.htm

封面图片

苹果延长iPhone 15标称电池寿命 1000次完整充电循环后保留原始容量的80%

苹果延长iPhone15标称电池寿命1000次完整充电循环后保留原始容量的80%苹果公司表示,它对iPhone15机型的最新测试包括在特定条件下对电池充电和放电1000次,但它没有提供有关该过程的任何确切细节。苹果补充说,它一直在不断改进iPhone电池组件及其电源管理系统。这一消息意味着,与以前的iPhone机型相比,iPhone15机型的最大电池容量下降到80%可能需要更长的时间。不过,苹果公司表示正在"调查"旧款iPhone的电池寿命,因此基于最新测试参数的比较还有待观察。苹果公司在其支持文件中称,任何iPhone机型的电池寿命最终取决于设备的正常使用和充电方式。要查看iPhone的电池容量,请打开设置app并轻点电池→电池健康状况和充电。在更新到最新iOS17.4测试版的iPhone15机型上,该菜单现在简单地称为"电池健康状况",并能一目了然地显示更多信息。...PC版:https://www.cnbeta.com.tw/articles/soft/1419595.htm手机版:https://m.cnbeta.com.tw/view/1419595.htm

封面图片

哈佛大学科学家开发出一种新型锂电池,充电只需3分钟,寿命长达20年

哈佛大学科学家开发出一种新型锂电池,充电只需3分钟,寿命长达20年一种"改变游戏规则"的电动汽车(EVs)新电池,可在三分钟内完成充电,寿命长达20年,可能很快就会出现在新车上。位于马萨诸塞州沃尔瑟姆的初创公司AddenEnergy已经获得了许可证和515万美元的资金,以便大规模地建造适合电动汽车的电池设计。该电池由哈佛大学的科学家开发,是金属锂,而不是市场上已经出现的电动汽车中的锂离子。其复杂的设计,受到BLT三明治的启发,可以防止麻烦的"树枝状物"的生长,这些树枝状物在锂金属电池中生长并缩短其寿命。目前,电动车包含的锂离子电池会随着时间的推移而退化,最多维持7或8年,这取决于它们的使用程度--很像智能手机的电池。——

封面图片

科学家开发出需要稀有材料更少的电池 充电更快、寿命更长

科学家开发出需要稀有材料更少的电池充电更快、寿命更长研究人员通过开发快速充电功能和使用有机材料增强负极,减少了对稀有非欧洲材料的依赖,从而推动了纳离子电池技术的发展。此外,他们还改进了阴极,创造出一种高能量、快速充电、无钴的材料,这种材料在使用过程中会逐渐发生结构变化,因此寿命更长。资料来源:代尔夫特理工大学这些电极可由有机材料制成,这减少了对并非来自欧洲的稀有材料的依赖,优点在于阴极也得到了改进。代尔夫特的研究人员还改进了另一面,并发表了相关文章。这项研究最近发表在《自然-可持续性》杂志上。《用于钠离子电池的快充高压分层阴极》详细介绍了一种新型正极的开发情况,其设计原理源自他们于2020年发表在《科学》杂志上的论文。根据这些设计原则,我们设计了一种材料,它结合了两种可能的最佳结构:高能量密度与快速充电。此外,这种材料在充电和放电过程中会逐渐改变其结构,从而延长其使用寿命。此外,这种材料不含钴,而钴在锂离子阴极中仍然很常见。由于对这些电池材料的了解不断加深,第三个增长基金项目"可持续电池技术"的下一步工作已经准备就绪。在该项目中,除了锂离子电池研究外,还将在全国范围内开展纳离子电池研究。电池研究将进一步扩大,使这项技术能够应用于各国市场。参考文献:DOI:10.1038/s41893-024-01266-1编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1421389.htm手机版:https://m.cnbeta.com.tw/view/1421389.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人