新研发的"人工光合作用"系统可以以10倍的效率生产甲烷

新研发的"人工光合作用"系统可以以10倍的效率生产甲烷芝加哥大学的六位化学家的一项研究显示,一种创新的人工光合作用新系统比以前的人工系统产量高一个数量级。上图是该过程的艺术插图。芝加哥大学化学家林文彬说:"许多人没有意识到的最大挑战是,即使是大自然也没有办法解决我们使用的能源量。他说,甚至光合作用也没有那么好。我们将不得不做得比大自然更好,这很可怕。""人工光合作用"是科学家正在探索的一个可能的选择。这需要对植物的系统进行重新加工,以制造我们自己的各种燃料。然而,一片叶子中的化学设备是非常复杂的,而且不那么容易转用于我们自己的目的。现在,芝加哥大学的六位化学家在11月10日发表在《自然·催化》杂志上的一项研究中提出了一个创新的人工光合作用新系统,其产量比以前的人工系统高一个数量级。与普通光合作用从二氧化碳和水产生碳水化合物不同,人工光合作用可以生产乙醇、甲烷或其他燃料。尽管在成为你每天为汽车提供燃料的方式之前,它还有很长的路要走,但这种方法给了科学家一个新的探索方向。此外,从短期来看,它可能对其他化学品的生产有帮助。林说:"这是对现有系统的巨大改进,但同样重要的是,我们能够非常清楚地了解这个人工系统在分子水平上是如何工作的,这在以前是没有过的,"他是芝加哥大学的詹姆斯-弗兰克化学教授和这项研究的高级作者。"没有自然光合作用,我们就不会在这里。它制造了我们在地球上呼吸的氧气,它制造了我们吃的食物,"林说。"但是它永远不会高效到为我们提供燃料来驾驶汽车;所以我们将需要别的东西。"问题是,光合作用是为了创造碳水化合物,这对我们来说是很好的燃料,但不是我们的汽车,它需要更集中的能量。因此,希望创造化石燃料替代品的研究人员必须重新设计这一过程,以创造能量密度更大的燃料,如乙醇或甲烷。在自然界中,光合作用是由几种非常复杂的蛋白质和色素组合而成的。它们吸收水和二氧化碳,将分子分解,并重新排列原子以制造碳水化合物--一长串的氢氧碳化合物。然而,科学家们需要重新设计反应,以产生一种不同的排列方式,只有氢围绕着一个多汁的碳核心-CH4,也被称为甲烷。这种重新设计比听起来要棘手得多;人们几十年来一直在修补它,试图接近大自然的效率。林和他的实验室团队认为,他们可以尝试添加一些迄今为止人工光合作用系统还没有包括的东西:氨基酸。该团队从一种叫做金属有机框架或MOF的材料开始,这是一类由金属离子通过有机连接分子固定在一起的化合物。然后,他们将MOF设计成单层,以便为化学反应提供最大的表面积,并将所有东西浸没在包括钴化合物在内的溶液中以运送电子。最后,他们在MOF中加入了氨基酸,并进行了实验,以判断哪种方法效果最好。现在,他们能够对反应的两个方面进行改进:分解水的过程和向二氧化碳添加电子和质子的过程。在这两种情况下,氨基酸帮助反应更有效地进行。然而,即使性能有了明显的提高,人工光合作用在生产足够的燃料以达到广泛使用的目的之前,还有很长的路要走。林说:"在我们现在所处的位置,它将需要扩大许多数量级,以制造足够数量的甲烷供我们消费。"这一突破也可以广泛地应用于其他化学反应,如制造药物和尼龙的起始材料等,可能非常有用。林说:"这些基本过程中有许多是相同的。如果你开发出好的化学制品,它们可以被插入许多系统中。"科学家们利用高级光子源的资源,即位于美国能源部阿贡国家实验室的同步加速器,来描述这些材料的特性。...PC版:https://www.cnbeta.com.tw/articles/soft/1332679.htm手机版:https://m.cnbeta.com.tw/view/1332679.htm

相关推荐

封面图片

重塑太阳能电池板:新原型通过人工光合作用产生甲烷

重塑太阳能电池板:新原型通过人工光合作用产生甲烷最近,发表在《ACSEngineeringAu》上的研究人员复制了这一自然过程,利用二氧化碳(CO2)、水和阳光制造出高能燃料甲烷。他们的创新原型系统有助于为取代不可再生的化石燃料铺平道路。尽管甲烷是一种强效温室气体,但它也是一种高能量密度燃料,是天然气的主要成分。包括天然气在内的化石燃料需要数百万年才能形成,从环境中提取这些燃料会产生有害影响。找到利用可再生能源生产甲烷的方法,有助于随着时间的推移减少对不可再生化石燃料的需求。这种特化细胞阵列有助于利用人工光合作用生产更多可持续燃料。图片来源:改编自《ACSEngineeringAu》,2023,DOI:10.1021/acsengineeringau.3c00034太阳是每天为地球提供可持续、丰富能源的来源之一。人类曾尝试用太阳能电池板来利用这一资源,但植物已经掌握了这一方法,它们利用阳光进行光合作用,将二氧化碳和水转化为氧气和糖,然后用作燃料。此前,KazunariDomen及其同事开发了一种系统,利用阳光将水分成氢气和氧气。现在,他们希望对这一过程进行改进,以便更全面地模仿光合作用,吸收二氧化碳,将太阳的能量储存在甲烷中,同时仍然使用具有成本效益且易于扩展的材料。开发甲烷生产原型研究小组制作了一组类似太阳能电池板的反应池,每个反应池都涂有掺铝钛酸锶(SrTiO3)光催化剂,以帮助启动反应。将这些涂有催化剂的电池装满水,放在阳光下暴晒。在这种条件下,水分裂成氢气和氧气,并将其分离,净化后的氢气被送入系统的第二部分。在第二部分中,氢气与二氧化碳发生反应,生成甲烷和水,后者通过光反应器被循环回第一步。接下来,他们创建了一个130平方英尺的电池阵列,大小相当于一间小卧室,在各种天气条件下连续运行了三天。虽然前景看好,但研究小组认识到,在这些设备成为大规模发电的可行选择之前,人工光合作用系统的效率还需要提高。研究人员说,这种概念验证系统可用于生产塑料或其他化学原料的前体,也可扩大规模,生产更多的可持续生物燃料。参考文献:"太阳光驱动的光催化水分离和二氧化碳甲烷化作为人工光合作用的一种手段生产甲烷",作者:TaroYamada、HiroshiNishiyama、HirokiAkatsuka、ShinjiNishimae、YoshiroIshii、TakashiHisatomi和KazunariDomen,2023年9月25日,ACSEngineeringAu。DOI:10.1021/acsengineeringau.3c00034编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1404421.htm手机版:https://m.cnbeta.com.tw/view/1404421.htm

封面图片

利用人工光合作用种植作物

利用人工光合作用种植作物光合作用通常是指绿色植物吸收光能后,把二氧化碳和水转化为有机物(包括可供食用的部分)和氧气。但这个过程的能量效率非常低——只有约1%的太阳能会被植物利用。近日,通过一种人工光合作用的方法,将二氧化碳和水转化为了食物。研究人员利用的是他们自主开发的两步串联电解装置,以及两步电催化方法:首先将二氧化碳和水转化为醋酸盐,然后在黑暗环境下培养可制造食物的生物体,这些生物体能够通过“吃”醋酸盐来繁殖。其中,电能是利用太阳能电池板产生的。研究人员表示,这种有机-无机混合系统可以将能量转化效率(太阳能到“食物”)最多提升到植物的18倍。他们还探究了利用该技术种植农作物的潜力,结果发现,豇豆、番茄、烟草、大米、油菜和绿豌豆都能在黑暗环境中,使用醋酸盐中的碳来生长。研究人员表示,这种人工光合作用的方式或可以用在城市中以便种植作物,或用于未来的太空探索。

封面图片

科学家用特殊的镜子“囚禁”光线以促进光合作用

科学家用特殊的镜子“囚禁”光线以促进光合作用光合作用是植物将太阳光、二氧化碳和水转化为化学能的过程。人工形式的光合作用可能通过使用太阳能电池和电解器将水分裂成氢气,或通过半透明材料塑造成人工叶子,通过化学反应将阳光转化为能量来重现这一过程。当涉及到为生物体内的光合作用加速时,我们也看到了有希望的进展,例如特殊的电极设计可以提高光合作用细菌的能量收集能力。隆德大学的新研究遵循类似的思路,科学家们利用光合紫色细菌的光收集机制进行研究。这些复合物由蛋白质和叶绿素分子组成,它们将光能转移到另一个被称为反应中心的复合物上,后者反过来驱动生物体的细胞代谢。这些"天线"复合物被放置在两个光镜之间,这两个光镜的间距仅为纳米级别。该团队的实验示意图,涉及光合紫色细菌的镜子和采光复合物图像来源/TönuPullerits隆德大学化学物理学教授TönuPullerits说:"我们将所谓的光合作用天线复合物插入两面镜子之间,这两面镜子作为一个光学微腔,相距仅几百纳米。可以说,我们以一种囚禁的方式抓住了在镜子之间来回反射的光线。"通过激光光谱学研究这一过程,科学家们观察到反射的光和天线复合物之间更强的相互作用,反过来又"大大延长了激发状态的寿命"。这反过来可以产生一种涟漪效应,加速能量的转移,最终使光合作用的关键因素之一变得更快、更有效。"我们现在已经在一个漫长的旅程中迈出了几个初步的步骤,"Pullerits说。"可以说,我们已经确定了一个非常有希望的方向。"这项研究发表在《自然通讯》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1333931.htm手机版:https://m.cnbeta.com.tw/view/1333931.htm

封面图片

人工光合作用可将工业废料转化为生态友好型塑料

人工光合作用可将工业废料转化为生态友好型塑料利用相当于太阳光的能量,该人工光合作用系统使用酶和铑催化剂来生产一种可生物降解的塑料前体。现在,这个过程首次使用低浓度的二氧化碳(类似于废气)和废丙酮作为原料来工作。该研究旨在重新利用来自永久性记号笔墨水的废丙酮和相当于发电厂和其他工业来源废气的二氧化碳。24小时后,超过60%的丙酮被转化为3-羟基丁酸。该团队的研究结果发表在《绿色化学》上,强调了人工光合作用的实际应用,以及他们进一步开发该技术以更有效地利用废弃材料的计划。聚-3-羟基丁酸酯--一种可生物降解的塑料--是一种经常用于包装材料的防水聚酯由3-羟基丁酸酯作为前体制成。在以前的研究中,由大阪都立大学人工光合作用研究中心的YutakaAmao教授领导的研究小组发现,3-羟基丁酸盐可以从二氧化碳和丙酮中高效合成,但只在二氧化碳或碳酸氢钠浓度较高时证明了这一点。这项新的研究旨在重新利用来自永久性记号笔墨水的废弃丙酮和低浓度的二氧化碳--相当于发电厂、化工厂或钢铁厂的废气。丙酮是一种相对便宜且合理无害的化学品,在许多不同的实验室环境中使用,用于反应或作为清洁剂,从而产生废丙酮。丙酮和二氧化碳作为原料,利用人工光合作用合成3-羟基丁酸,由相当于太阳光的光线驱动。24小时后,超过60%的丙酮已成功转化为3-羟基丁酸。"我们把注意力集中在利用火力发电厂和其他来源的废气产生的二氧化碳来证明人工光合作用的实际应用的重要性,"Amao教授解释说。"在未来,我们的目标是进一步发展人工光合作用技术,使其能够使用液体废物中的丙酮以及实验室的废气作为原料。"他们的研究结果于2023年3月1日发表在《绿色化学》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1351991.htm手机版:https://m.cnbeta.com.tw/view/1351991.htm

封面图片

科学家通过人工光合作用利用阳光制造出可生物降解的塑料

科学家通过人工光合作用利用阳光制造出可生物降解的塑料利用太阳光为光氧化系统提供动力,丙酮酸和CO¬2被苹果酸脱氢酶和富马酸酶转化为富马酸由人工光合作用研究中心的YutakaAmao教授和大阪市立大学研究生院的研究生MikaTakeuchi领导的研究小组,已经成功地从二氧化碳中合成富马酸,这是一种塑料原料,这也是首次由阳光驱动来生成的材料。他们的研究结果发表在《可持续能源与燃料》上。富马酸通常是从石油中合成的,用作制造可生物降解塑料(如聚丁二酸)的原料,但这一发现表明,富马酸可以利用可再生的太阳能从二氧化碳和生物质衍生化合物中合成。"为了实现人工光合作用的实际应用,这项研究成功地使用了可见光-可再生能源-作为动力源,"Amao教授解释说。"在未来,我们的目标是收集气态二氧化碳,并通过人工光合作用直接合成富马酸"。...PC版:https://www.cnbeta.com.tw/articles/soft/1343733.htm手机版:https://m.cnbeta.com.tw/view/1343733.htm

封面图片

科学家巧妙"破解"光合作用 为可再生能源的突破铺平道路

科学家巧妙"破解"光合作用为可再生能源的突破铺平道路由剑桥大学领导的一个由物理学家、化学家和生物学家组成的国际团队能够在活细胞中以超快的时间尺度研究光合作用--植物、藻类和一些细菌将阳光转化为能量的过程:百万分之一秒。尽管它是地球上最知名和研究最充分的过程之一,研究人员发现光合作用仍然有秘密可言。利用超快光谱技术研究能量的运动,研究人员发现能够从负责光合作用的分子结构中提取电子的化学物质在初始阶段就这样做了,而不是像以前认为的那样在很久以后。光合作用的这种"重新布线"可以改善它处理过剩能量的方式,并创造出新的和更有效的使用其能量的方法。这一结果于3月22日在《自然》杂志上报告。尽管光合作用是一个广为人知且被广泛研究的过程,剑桥大学的研究人员发现它仍有隐藏的秘密。通过采用超快光谱技术,他们发现从负责光合作用的分子结构中提取电子发生在比以前假设的更早的阶段。光合作用的这种"重新布线"可能会导致更好地管理过剩的能量,并开发出新的、更有效的方法来利用其潜力。剑桥大学优素福-哈米德化学系的JennyZhang博士说:"我们对光合作用的了解并不像我们想象的那样多,我们在这里发现的新的电子转移途径完全令人惊讶。"他负责协调这项研究。虽然光合作用是一个自然过程,但科学家们也一直在研究如何利用它来帮助解决气候危机,例如,通过模仿光合作用过程,从阳光和水产生清洁燃料。张和她的同事最初试图了解为什么一种叫做醌的环形分子能够从光合作用中"偷"走电子。醌在自然界中很常见,而且它们可以很容易地接受和送出电子。研究人员使用一种叫做超快瞬时吸收光谱的技术来研究醌在光合作用蓝细菌中的表现。一个国际科学家小组以百万分之一秒的超快时间尺度研究了活细胞中的光合作用。尽管得到了广泛的研究,光合作用仍然隐藏着未被发现的秘密。通过采用超快光谱技术,研究小组发现,化学物质在比以前认为的更早的阶段从参与光合作用的分子结构中提取电子。这种"重新布线"可以加强该过程对多余能量的处理,并产生新的、有效的方法来利用其力量。张说:"没有人正确地研究过这种分子如何在光合作用的早期阶段与光合作用机器相互作用:我们以为我们只是用一种新技术来证实我们已经知道的东西。相反,我们发现了一个全新的途径,并进一步打开了光合作用的黑盒子。使用超快光谱观察电子,研究人员发现,发生光合作用初始化学反应的蛋白质支架是"泄漏的",允许电子逃逸。这种泄漏性可以帮助植物保护自己免受明亮或快速变化的光线的损害。"光合作用的物理学令人印象深刻,"共同第一作者、剑桥大学卡文迪什实验室的托米-贝基说,"通常情况下,我们在高度有序的材料上工作,但观察电荷在细胞中的传输为新发现大自然如何运作提供了非凡的机会。""由于来自光合作用的电子分散在整个系统中,这意味着我们可以接触到它们,"共同第一作者劳拉-韦博士说,她在生物化学系从事这项工作,现在在芬兰图尔库大学工作。我们不知道这一途径的存在这一事实令人振奋,因为我们能够利用它为可再生能源提取更多的能量。"研究人员能够在光合作用过程的早期操纵光合作用途径从太阳产生清洁燃料时,可以使该过程更加有效。此外,调节光合作用的能力可能意味着可以使农作物更能够忍受强烈的阳光。许多科学家曾试图从光合作用的早期阶段提取电子,但说这是不可能的,因为能量是如此埋没在蛋白质支架中,张说。"我们可以在更早的过程中偷取它们,这一事实令人震惊。起初,我们认为我们犯了一个错误:我们花了一段时间来说服自己我们做到了。"这一发现的关键是使用了超快光谱学,它使研究人员能够在飞秒级--万亿分之一秒--上跟踪活体光合细胞中的能量流动。共同作者、生物化学系的克里斯托弗-豪(ChristopherHowe)教授说:"使用这些超快方法使我们能够更多地了解光合作用的早期事件,而地球上的生命正是依赖于此。"...PC版:https://www.cnbeta.com.tw/articles/soft/1351213.htm手机版:https://m.cnbeta.com.tw/view/1351213.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人