科学家揭示灵长类动物大脑之间的差异 - 人类、猿类和猴类

科学家揭示灵长类动物大脑之间的差异-人类、猿类和猴类了解使人类大脑与众不同的分子差异可以帮助科学家研究其发展中的中断。一项新的研究调查了人类和非人类灵长类动物如黑猩猩、恒河猴和狨猴之间前额叶皮层细胞的差异和相似之处--前额叶皮层是大脑的最前端区域,这个区域在高级认知功能中起着核心作用。该研究最近发表在《科学》杂志上,由包括威斯康星大学麦迪逊分校神经科学教授AndreSousa在内的一个研究小组进行。这些物种之间的细胞差异可能阐明了它们的进化步骤,以及这些差异如何与人类所见的自闭症和智力障碍等疾病有关。在华盛顿大学麦迪逊分校韦斯曼中心研究大脑发育生物学的索萨决定与他作为博士后研究员工作的耶鲁大学实验室合作,从研究和分类前额叶皮质的细胞开始。研究人员分析了来自四种密切相关的灵长类动物的前额皮层细胞(每个大脑中的阴影区域)的遗传物质,以描述细胞类型和遗传学方面的微妙差异。图像来源:威斯康星大学麦迪逊分校"我们正在对背外侧前额叶皮层进行分析,因为它特别有趣。这个皮层区域只存在于灵长类动物中。它不存在于其他物种中,"Sousa说。"它与高度认知方面的几个相关功能有关,如工作记忆。它也被牵涉到一些神经精神疾病中。因此,我们决定做这项研究,以了解人类在这个大脑区域的独特之处。"Sousa和他的实验室从人类、黑猩猩、猕猴和狨猴的组织样本中收集了60多万个前额皮质细胞的遗传信息。他们分析了这些数据,将细胞分为不同的类型,并确定不同物种间类似细胞的差异。不出所料,绝大部分的细胞是相当类似的,因为这些物种在进化上相对接近。安德烈-索萨索萨和他的合作者在前额叶皮层中发现了五种在所有四个物种中都不存在的细胞类型。他们还发现某些细胞类型的丰度存在差异,以及不同物种间类似细胞群的多样性。当比较黑猩猩和人类时,差异似乎很大--从他们的身体外观到他们的大脑能力。但是在细胞和基因水平上,至少在前额叶皮层中,相似之处很多,而不同之处则很少。"我们的实验室真的想知道人类的大脑有什么独特之处。显然,从这项研究和我们以前的工作来看,它的大部分实际上是相同的,至少在灵长类动物中是如此,"Sousa说。研究人员发现的细微差异可能是确定其中一些独特因素的开始,而这些信息可能导致在分子水平上对发育和发育障碍的启示。"我们想知道在人类和其他灵长类动物之间的进化分裂之后发生了什么,"Sousa说。"这个想法是在一个基因或几个基因中发生了突变,这些基因现在的功能略有不同。但是,如果这些基因与大脑发育有关,例如,某种细胞产生的数量,或细胞与其他细胞的连接方式,它是如何影响神经元回路和它们的生理特性?我们想了解这些差异如何导致大脑中的差异,然后导致我们可以在成年人身上观察到的差异"。该研究的观察是在成年人的大脑中进行的,在大部分发育完成之后。这意味着,这些差异可能是在大脑发育过程中发生的。因此,研究人员的下一步是研究发育中的大脑样本,并将他们的调查范围扩大到前额叶皮层之外,以便有可能找到这些差异的起源地和时间。希望这些信息将导致一个更强大的基础,在此基础上进行发育障碍研究。...PC版:https://www.cnbeta.com.tw/articles/soft/1332685.htm手机版:https://m.cnbeta.com.tw/view/1332685.htm

相关推荐

封面图片

科学家发现灵长类动物和其他动物之间大脑的关键差异

科学家发现灵长类动物和其他动物之间大脑的关键差异一个多国研究小组现在已经更好了解物种之间大脑皮层神经元架构的差异,这要归功于高分辨率显微镜。波鸿鲁尔大学发育神经生物学研究小组的研究人员在PetraWahle教授的领导下,已经证明灵长类动物和非灵长类动物在其结构上一个重要差异:轴突的起源,这是负责传输被称为动作电位电信号的过程。这些结果最近发表在《eLife》杂志上。研究小组研究了各种动物,包括啮齿类动物(小鼠、大鼠)、有蹄类动物(猪)、食肉动物(猫、雪貂),以及动物学灵长类的猕猴和人类。科学家们通过使用五种不同的染色技术和对超过34,000个神经元的评估得出结论,非灵长类动物和灵长类动物之间存在着物种差异。与非灵长类动物的兴奋性锥体神经元相比,灵长类动物大脑皮层外层II和III的兴奋性锥体神经元上携带轴突的树突明显较少。此外,对于抑制性中间神经元,在猫和人类物种之间发现了携带轴突的树突细胞百分比方面的巨大差异。在比较具有初级感觉和高级大脑功能的猕猴皮层区域时,没有观察到定量差异。研究人员表示,高分辨率显微镜在研究中特别重要,这使得检测轴突起源可以在微米级准确跟踪,这在传统显微镜下有时并不那么容易。通常,一个神经元将到达树突的兴奋性输入与抑制性输入进行整合,这一过程被称为体突整合。然后,神经元决定输入是否足够强大和重要,以通过动作电位传送到其他神经元和脑区。携带轴突的树突被认为是有特权的,因为这些树突的去极化输入能够直接唤起动作电位,而无需参与体细胞整合和体细胞抑制。为什么会演变出这种物种差异,以及它对灵长类动物的新皮层信息处理可能具有的潜在优势,目前尚不清楚。PC版:https://www.cnbeta.com/articles/soft/1301255.htm手机版:https://m.cnbeta.com/view/1301255.htm

封面图片

耶鲁科学家找到了人类大脑前额叶皮层区域的独有特征

耶鲁科学家找到了人类大脑前额叶皮层区域的独有特征在2022年8月25日发表于《科学》杂志上的一篇论文中,耶鲁大学研究人员详细介绍了人类大脑前额叶皮层的独有特征。据悉,背外侧前额叶皮层(dlPFC)是灵长类动物独有的大脑区域,其在高阶认知能力方面起到了重要的作用。而借助单细胞RNA测序技术,研究人员分析了从成人、黑猩猩、猕猴、以及狨猴身上收集的数十万个dlPFC细胞中的基因表达水平。截图(来自:Science)论文资深作者、耶鲁大学Harvey&KateCushing神经学教授、兼比较医学/遗传学/精神病学教授NenadSestan表示:尽管当下我们将背外侧前额叶皮层(dlPFC)视作人类身份的核心组成部分,但仍不清楚它为何被人类所独有、并将我们与其它灵长类动物区分开来。好消息是,现在我们已经知悉了更多线索。为了回答这个问题,科学家们首先遍历了在人类或其它分析过的非人类灵长类物种中,是否也存在任何独特的细胞类型。在对具有相似表达谱的细胞进行分组后,研究人员发现了109种共享的灵长类细胞类型、且其中有五种并非所有物种所共有。其中包括一种仅存在于人类身上的小胶质细胞/大脑特异性免疫细胞,以及仅由人类和黑猩猩共享的另一种细胞。深入了解后,可以确定这种具有人类特异性的小胶质细胞类型,存在于物种的整个发育和成年期——表明这些细胞在维持大脑、而不是对抗疾病方面发挥了作用。NenadSestan教授补充道,与其他灵长类动物相比,人类生活在一个非常不同的环境中,有着独特的生活方式和神经胶质细胞。其中包括的小胶质细胞,对上述差异非常敏感——意味着该细胞类型可能代表了对环境的免疫反应。此外在对小胶质细胞基因表达的分析中,耶鲁科学家还发现了另一个人类特有的惊喜,那就是FOXP2基因的存在。这一发现引起了研究人员的极大兴趣,因为FOXP2的变体与言语运动障碍有关——这是一种让患者难以产生言语的疾病。另有研究表明,FOXP2与其它神经精神类疾病有关——比如自闭症、精神分裂症和癫痫。Sestan及其同事指出,在一部分兴奋性神经元中,该基因表现出了灵长类动物的特异性表达、但又在小胶质细胞中表现出了人类的特异性表达。该实验室的博士后助理兼研究合著者ShaojieMa总结道:几十年来,FOXP2引起了科学家们的浓厚兴趣,但我们迟迟没有知晓它是如何让人类具有这种区别于其它灵长类动物的独特性的。我们对FOXP2的新发现感到异常兴奋,因其开辟了语言和疾病研究的新方向。PC版:https://www.cnbeta.com/articles/soft/1312423.htm手机版:https://m.cnbeta.com/view/1312423.htm

封面图片

科学家们发现人类大脑皮层过度折叠导致认知能力低下的原因

科学家们发现人类大脑皮层过度折叠导致认知能力低下的原因人类大脑复杂的表面折叠使该器官能够将2.6平方英尺的大脑皮层组织挤进头骨。资料来源:加州再生医学研究所大脑皮层由100多亿个细胞和100多万亿个连接组成,形成一个只有5毫米厚的灰质层--相当于不到三个叠加的四分之一。大多数具有大型大脑的动物都表现出皮层折叠,这使得非常大面积的大脑皮层组织(大约2.6平方英尺)被压缩在头骨的范围内。皮质折叠越多,该物种的认知功能就越先进和复杂。小鼠和大鼠等低等物种的大脑较小,表面光滑;大象、鼠海豚和猿猴等高阶物种的大脑皮层显示出不同程度的回旋化或褶皱。人类拥有最多褶皱的大脑,被认为是高级进化的一个指标。然而,在一些人类中,大脑皮层的过度折叠与更大的认知能力无关,而是相反,并与神经发育延迟、智力障碍和癫痫发作有关。控制这种折叠的基因大多是未知的。加州大学圣地亚哥分校医学院和雷迪儿童基因组医学研究所的研究人员在2023年1月16日的《美国科学院院刊》上写道,他们的新发现加深了对人类大脑皮层组织的理解。加州大学圣地亚哥分校的研究人员确定了一种突变,这种突变会导致人类大脑皱缩的大脑皮层过度折叠,从而导致认知功能减弱。资料来源:加州大学圣地亚哥分校健康科学部在高级研究作者、加州大学圣地亚哥分校医学院Rady神经科学教授、Rady儿童基因组医学研究所神经科学研究主任JosephGleeson博士的领导下,一个名为"神经遗传学联盟"的国际研究团体在10年内对近1万个患有小儿脑病的家庭进行了基因组分析,以寻找新的病因。格里森说:"从我们的队列中,我们发现有四个家庭患有一种叫做多发性脑病的疾病,意思是说有太多的脑回,而这些脑回又过于紧密,直到最近,大多数治疗这种疾病患者的医院都没有检测遗传原因。联合会能够一起分析所有四个家庭,这有助于我们发现这种情况的原因。"具体来说,所有四个家庭都显示了一个名为跨膜蛋白161B(TMEM161B)的基因的突变,该基因在细胞表面产生一种以前未知功能的蛋白质。第一作者、Gleeson实验室的博士后LuWang博士说:"我们确定了TMEM161B的原因之后就着手了解过度折叠是如何发生的。我们发现该蛋白控制着细胞的骨架和极性,而这些控制着折叠。"利用来自患者皮肤样本的干细胞,以及工程小鼠,研究人员在胚胎发育早期发现了神经细胞相互作用的缺陷。Wang说:"我们发现该基因对于神经细胞如何相互作用所需的细胞骨架变化是必要和充分的。有趣的是,该基因首次出现在进化过程中的海绵动物身上,而海绵动物甚至没有大脑,所以显然该蛋白必须有其他功能。在这里,我们发现了调节人类大脑中褶皱数量的关键作用。"该研究的作者强调,基因发现研究很重要,因为它们准确地指出了人类疾病的原因,但这些发现可能需要很多年才能发展成新的治疗方法。希望医生和科学家能够在我们的成果基础上进行扩展,以改善对脑部疾病患者的诊断和护理。...PC版:https://www.cnbeta.com.tw/articles/soft/1347985.htm手机版:https://m.cnbeta.com.tw/view/1347985.htm

封面图片

是什么让人类的智慧与众不同?科学家找出了解大脑的新窗口

是什么让人类的智慧与众不同?科学家找出了解大脑的新窗口研究人员发现,人类大脑增强的处理能力可能源于我们神经元结构和功能的差异。图像来源:昆士兰大脑研究所/斯蒂芬-威廉姆斯教授他们最近在《细胞报告》杂志上发表了他们的发现。昆士兰大学昆士兰大脑研究所(QBI)的斯蒂芬-威廉姆斯教授解释说,他的团队研究了人类新皮层锥体神经元嵌入其神经元网络的电特性。"为了研究人类神经元,我们从人类新皮层的小块组织中制备了活体组织片,这些组织片是从两家医院接受神经外科手术以缓解难治性癫痫或切除脑肿瘤的病人身上收集的,"威廉姆斯教授说。"我们通过对人类和啮齿类动物的锥体神经元的细胞体和细树突进行错综复杂的同步电记录来比较人类和啮齿类动物的电特性。我们的研究显示,人类和啮齿动物的新皮层锥体神经元具有共同的基本生物物理特性。例如,我们发现人类和啮齿类新皮层锥体神经元的树突都会产生树突钠尖峰,这表明整合一个神经元接收的成千上万个输入信号的机制是一致的。然而,我们发现人类新皮层锥体神经元的计算功能得到了极大的加强"。该研究的共同作者、QBI博士后HelenGooch博士表示,研究小组发现人类新皮层锥体神经元的树状结构,也就是携带电信号的树枝状延伸部分比其他哺乳动物,如啮齿类动物的树状结构更大、更复杂。Gooch博士说:"人类树突树的这种阐述伴随着在多个地点产生树突尖峰,这些尖峰积极地在神经元中扩散,以驱动每个神经元的输出信号。我们认为,这种分布式树突信息处理的增强因此可能是提高我们大脑整体处理能力的一个因素"。这种发现的转化为更好地理解人类大脑的电活动在疾病中如何受到干扰铺平了道路。母校医院神经科医生和共同作者LisaGillinder博士说:"作为临床研究人员,我们不仅对了解人类脑细胞的正常功能感到兴奋,而且通过这一领域的未来研究,我们还旨在更好地了解像癫痫这样的疾病所发生的功能变化,希望能改善治疗。"...PC版:https://www.cnbeta.com.tw/articles/soft/1333357.htm手机版:https://m.cnbeta.com.tw/view/1333357.htm

封面图片

科学家们找到努力思考会让人感到疲倦的原因

科学家们找到努力思考会让人感到疲倦的原因不言而喻,艰苦的体力劳动使人疲惫不堪,但艰苦的脑力劳动呢?坐着苦思冥想几个小时也会让人感到疲惫。现在,科学家有新的证据来解释这一点。根据他们的研究结果,因紧张思考而感到精神疲惫(而不是昏昏欲睡)的原因并不全在脑子里。资料图这项新研究表明,当紧张的认知工作持续数小时后,潜在的有毒副产品会在大脑中被称为前额叶皮层的部分堆积。研究人员指出,这反过来又改变了人们对决策的控制,所以当认知疲劳出现时人们就会转向不需要努力或等待的低成本行动。这项研究已于8月11日发表在《CurrentBiology》上。法国巴黎Pitié-Salpêtrière大学的MathiasPessiglione说道:‘有影响力的理论认为,疲劳是大脑制造的一种幻觉,它使我们停止正在做的任何事情转而从事更令人满意的活动。但我们的研究结果表明,认知工作会导致真正的功能改变--有毒物质的积累--所以疲劳确实会是一个使我们停止工作的信号,但目的不同:保护大脑功能的完整性。”Pessiglione及其同事--包括该研究的第一作者AntoniusWiehler--想了解精神疲劳到底是什么。虽然机器可以连续计算但大脑不能。他们想发现原因。他们怀疑这个原因跟回收源自神经活动的潜在有毒物质的需要有关。为了寻找支持这一理论的证据,他们使用了磁共振波谱(MRS)来监测一个工作日内的大脑化学成分。他们研究了两组人:那些需要努力思考的人和那些有相对简单认知任务的人。他们看到了疲劳的迹象--包括瞳孔扩大的减少--只出现在做艰苦的脑力劳动的那一组。该组中的人在他们的选择中也表现出一种变化,即以最小的努力在短时间内提出奖励的选项。关键的是,他们在大脑前额叶皮层的突触中也有较高的谷氨酸水平。科学家们称,这跟先前的证据一起支持了这样的假设:谷氨酸的积累使得进一步激活前额叶皮层的成本更高,因此在精神上艰难的工作日之后认知控制更加困难。那么是否有一些方法可以克服我们大脑努力思考的能力的这种限制?“恐怕没有,”Pessiglione回答道,“我会采用好的老配方:休息和睡眠!有很好的证据表明,谷氨酸在睡眠期间从突触中被消除了。”该研究结果可能还有其他实际意义。如研究人员称,对前额叶代谢物的监测可能有助于发现严重的精神疲劳。这种能力可能有助于调整工作议程以避免倦怠。Pessiglione还建议人们避免在疲劳时做出重要决定。在未来的研究中,研究人员希望了解为什么前额叶皮层似乎特别容易受到谷氨酸积累和疲劳的影响。另外,他们也很想知道,大脑中相同的疲劳标记是否可以预测健康状况的恢复,如癌症或抑郁症。PC版:https://www.cnbeta.com/articles/soft/1304235.htm手机版:https://m.cnbeta.com/view/1304235.htm

封面图片

科学家发现小胶质细胞在大脑发育过程中的关键功能

科学家发现小胶质细胞在大脑发育过程中的关键功能研究人员通过研究实验室培育的脑器官组织,发现了小胶质细胞在大脑发育过程中的重要作用。这项研究的重点是小胶质细胞对胆固醇的调节,它为大脑生长和治疗神经系统疾病的潜在方法提供了新的视角。(实验室培育的微型脑器官模型的艺术家概念图)。这项研究标志着人类脑器官组织的发展实现了重大飞跃,并有可能极大地影响我们对大脑发育和疾病的理解。这项题为"iPS细胞衍生的小胶质细胞通过胆固醇转移促进大脑类器官成熟"的研究于2023年11月1日发表在《自然》(Nature)杂志上。类器官研究的突破为了研究小胶质细胞在人类早期大脑发育中的关键作用,弗洛伦特-金豪斯(FlorentGinhoux)教授领导的A*STAR新加坡免疫学网络(SIgN)的科学家们利用尖端技术,在实验室中创造了被称为类器官(organoids)的类脑结构,也被称为"迷你大脑"。这些大脑有机体与人类大脑的发育非常相似。然而,以前的模型缺乏小胶质细胞,而小胶质细胞是大脑早期发育的关键组成部分。标有线粒体(黄色)、细胞核(品红色)和肌动蛋白丝(青色)的人类干细胞衍生小胶质细胞的超分辨率图像。这些小胶质细胞有助于人脑类器官模型中神经元的成熟。资料来源:A*STAR的SIgN为了弥补这一差距,A*STAR的研究人员设计了一种独特的方案,引入由用于创建脑器官模型的相同人类干细胞生成的小胶质细胞。这些引入的细胞不仅表现得像真正的小胶质细胞,而且还影响了有机体内其他脑细胞的发育。蛋白质组分析和胆固醇的作用A*STAR分子与细胞生物学研究所(IMCB)的拉多斯瓦夫-索博塔(RadoslawSobota)博士和他在新加坡质谱国家实验室(SingMassNationalLaboratoryforMassSpectrometry)的团队采用最先进的定量蛋白质组学方法来揭示蛋白质的变化。他们的分析为了解有机体的蛋白质组成提供了重要依据,进一步证实了研究结果。这项研究的与众不同之处在于发现了小胶质细胞与其他脑细胞相互作用的独特途径。研究发现,小胶质细胞在调节大脑中胆固醇水平方面起着至关重要的作用。研究发现,小胶质细胞样细胞含有含有胆固醇的脂滴,这些脂滴被释放出来,并被器官组织中其他发育中的脑细胞吸收。这种胆固醇交换被证明能显著促进这些脑细胞,尤其是其祖细胞的生长和发育。胆固醇在大脑中含量丰富,约占人体总胆固醇含量的25%。胆固醇对神经元的结构和功能至关重要。胆固醇代谢异常与多种神经系统疾病有关,包括阿尔茨海默氏症和帕金森氏症。为了研究脂质在大脑发育和疾病中的作用,马库斯-温克(MarkusWenk)教授领导的新加坡国立大学医学院(NUSMedicine)生物化学系的研究人员承担了数据采集的重要任务,特别是在脂质组学领域,以便对含有小胶质细胞的大脑有机体内的脂质组成和动态有宝贵的见解。洞察脑细胞的生长和发育利用这些信息,由VeroniqueAngeli副教授领导的新加坡国立大学医学部微生物学与免疫学系的另一个研究小组发现,胆固醇会影响人脑模型中年轻脑细胞的生长和发育。小胶质细胞使用一种特殊的蛋白质来释放胆固醇,当这一过程被阻断时,就会导致类器官细胞生长得更多,从而形成更大的大脑模型。"人们一直都知道小胶质细胞是大脑发育的关键,但对它们的确切作用仍然知之甚少。我们微生物学和免疫学系团队的这一发现尤其具有影响力,因为我们终于了解了胆固醇是如何运输的。"新加坡国立大学医学部免疫学转化研究项目主任Veronique副教授补充说:"我们下一步的重点将是研究如何调节胆固醇的释放,以优化大脑发育,减缓或预防神经系统疾病的发生。"分子相互作用的全面分析萨里大学的奥利维尔-塞克斯(OlivierCexus)博士曾就职于A*STAR,他利用蛋白质组和脂质组分析,逐步破解了大脑有机体内复杂的分子相互作用。这为我们深入了解大脑发育过程中的新陈代谢相互关系以及对疾病的潜在影响提供了宝贵的资料。这些共同努力有助于加深我们对小胶质细胞的作用、脑器官内的分子成分及其对人类健康的影响的理解。结论和未来影响研究的主要作者、A*STARSIgN高级首席研究员FlorentGinhoux教授说:"了解小胶质细胞在大脑发育和功能中的复杂作用是一个活跃的研究领域。我们的研究结果不仅促进了我们对人类大脑发育的了解,还有可能影响我们对大脑疾病的认识。这为未来研究神经发育疾病和潜在疗法开辟了新的可能性"。这项研究的合著者、KK妇女儿童医院生殖医学部高级顾问、国家医学研究委员会高级临床科学家杰瑞-陈(JerryChan)教授补充说:"目前缺乏研究小胶质细胞如何与发育中的大脑相互作用的工具。这阻碍了人们对小胶质细胞相关疾病的了解,而这些疾病在自闭症、精神分裂症以及阿尔茨海默病和帕金森病等神经退行性疾病的早期发展过程中发挥着重要作用。利用同源多能干细胞培育出这些新型小胶质细胞相关脑器官组织,使我们有机会研究小胶质细胞和神经元在大脑早期发育过程中的复杂相互作用。因此,这可能使我们能够研究小胶质细胞在疾病环境中的作用,并提出及时开发新疗法的方法"。...PC版:https://www.cnbeta.com.tw/articles/soft/1398213.htm手机版:https://m.cnbeta.com.tw/view/1398213.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人