研究人员制作出史上最快的游泳软体机器人“Butterfly bots”

研究人员制作出史上最快的游泳软体机器人“Butterflybots”"迄今为止,游泳软体机器人的游泳速度还不能超过每秒一个身位,但是海洋动物--比如蝠鲼--能够游得更快,而且效率更高,"关于这项工作的论文的通讯作者、北卡罗来纳州立大学机械和航空航天工程系副教授JieYin说。"我们想借鉴这些动物的生物力学,看看我们是否能开发出更快、更节能的软体机器人。我们开发的原型工作得特别好。"受蝠鲼生物力学的启发,北卡罗来纳州立大学的研究人员已经开发出一种节能的软体机器人,其游泳速度比以前的游泳软体机器人快四倍以上。这些机器人被称为"蝴蝶机器人",因为它们的游泳动作类似于人在进行蝶泳时手臂的运动方式。研究人员开发了两种类型的蝴蝶机器人。一种是专门为速度而设计的,能够达到每秒3.74个身位的平均速度。第二种被设计成高度机动性,能够向右或向左急转。这个可操作的原型能够达到每秒1.7个身位的速度。"研究空气动力学和生物力学的研究人员使用一种叫做斯特劳哈尔数(Strouhal)的概念来评估飞行和游泳动物的能量效率,"该论文的第一作者、北卡罗来纳州立大学的新近博士毕业生YindingChi说。"当动物游泳或飞行时,Strouhal数在0.2和0.4之间,推进效率达到峰值。我们的两个蝴蝶机器人的Strouhal数都在这个范围内。"蝴蝶机器人的游泳动力来自它们的翅膀,它们的翅膀是"双稳态的",这意味着翅膀有两种稳定状态。翅膀类似于一个扣式发夹,发夹在两种状态下都可以保持稳定的,在施加一定量的能量(通过弯曲它)之前和之后,当能量达到临界点时,发夹就会稳定地形成两种不同的形状。在蝴蝶机器人中,受发夹启发的双稳态翅膀被连接到一个柔软的硅胶体上。用户通过将空气注入软体内部的腔室来控制翅膀在两种稳定状态之间的切换。当这些腔室充气和放气时,机身就会上下弯曲--迫使机翼随之来回摆动。"以前开发扑翼机器人的大多数尝试都集中在使用电机直接向双翼提供动力。我们的方法使用双稳态翼,通过移动中心体被动地驱动。这是一个重要的区别,因为它允许简化设计,从而降低了重量"。研究人员表示。更快的蝴蝶机器人只有一个"驱动单元",这使得它虽然游速非常快,但很难向左或向右转弯。可操控的蝴蝶机器人本质上有两个驱动单元,它们并排连接。这种设计允许用户操纵两边的翅膀,或者只"扇动"一个翅膀,这就是使它能够进行急转弯的原因。"这项工作是一个令人兴奋的概念证明,但它有局限性,"研究人员称,"最明显的是,目前的原型被细长的管子拴住了,这是我们用来将空气泵入中央机构的。我们目前正在努力开发一个无拴的、自主的版本。"这篇题为"高速高效、类似蝶泳的软体游泳器的系留"的论文将于11月18日发表在开放获取的《科学进展》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1333247.htm手机版:https://m.cnbeta.com.tw/view/1333247.htm

相关推荐

封面图片

我研究人员首创用微波直接驱动机器人

我研究人员首创用微波直接驱动机器人不需要携带任何电器件,可以灵活地工作在其他驱动方式尚不能胜任的某些特殊场合(比如封闭、非透明结构体内部),这是哈尔滨工业大学(威海)机器人研究所软体机器人实验室于近日研制成功的微波驱动机器人的两大特色。该机器人首创性地直接利用微波驱动,从而为机器人驱控提供了一种全新的方式。上述研究成果于近日刊发在国际期刊《尖端科学》上。PC版:https://www.cnbeta.com/articles/soft/1317675.htm手机版:https://m.cnbeta.com/view/1317675.htm

封面图片

研究人员开发出可从陆地到海洋之间无缝转换工作的软体机器人

研究人员开发出可从陆地到海洋之间无缝转换工作的软体机器人"我们受到大自然的启发,开发出一种能够执行不同任务并适应环境的机器人,而无需增加致动器或复杂性,"计算机科学学院人机交互研究所变形物质实验室的博士后DineshK.Patel说。"我们的双稳态致动器简单、稳定、耐用,为未来的动态、可重新配置的软体机器人工作奠定了基础。双稳态致动器是由含有形状记忆合金弹簧的3D打印软橡胶制成的,它对电流的反应是收缩,这导致致动器弯曲。该团队利用这种双稳态运动来改变推杆或机器人的形状。一旦机器人改变了形状,它就会保持稳定,直到另一个电荷将它变回以前的配置。CMU工程学院机械工程系教授卡梅尔-马吉迪(CarmelMajidi)说:"与动物如何从行走到游泳到爬行到跳跃相匹配,是生物启发和软体机器人技术的一个巨大挑战。"例如,该团队创造的一个机器人有四个弯曲的致动器,连接到一个由两个双稳态致动器组成的手机大小的身体的四角。在陆地上,弧形致动器充当腿,使机器人能够行走。在水中,双稳态致动器改变了机器人的形状,使弧形致动器处于一个理想的位置,充当螺旋桨,使它能够游泳。"需要有腿来在陆地上行走,需要有螺旋桨来在水中游泳。"密歇根大学机器人学助理教授、Majidi的前博士生XiaonanHuang说:"用为每种环境设计的独立系统来建造机器人会增加复杂性和重量。"我们为两种环境使用同一个系统,以创造一个高效的机器人。"该团队创造了另外两个机器人:一个可以爬行和跳跃,一个受毛虫和球鼠妇(西瓜虫)的启发,可以转换爬行和滚动的姿态。这些执行装置只需要一百毫秒的电荷就能改变它们的形状,而且它们很耐用。该团队让一个人骑着自行车在其中一个执行器上骑了几次,并将他们的机器人形状改变了数百次,以证明其耐用性。在未来,这些机器人可用于救援情况或与海洋动物或珊瑚互动。在执行器中使用热激活弹簧可以开辟环境监测、触觉以及可重构电子和通信方面的应用。HCII的Cooper-Siegel助理教授兼MorphingMatter实验室负责人LiningYao说:"有许多有趣和令人兴奋的场景,像这样的节能和多功能机器人可能是有用的。"...PC版:https://www.cnbeta.com.tw/articles/soft/1354195.htm手机版:https://m.cnbeta.com.tw/view/1354195.htm

封面图片

毫米软体机器人会奔跑会游泳,堪比领域的“小猎豹”

毫米软体机器人会奔跑会游泳,堪比机器人领域的“小猎豹”北京时间9月15日早间消息,据报道,目前,奥地利约翰内斯·开普勒大学科学家最新研制出能够高速奔跑、游泳和跳跃的可操控软体机器人,在测试过程中,机器人达到了每秒70倍体长的奔跑速度,该结果是令人惊奇的,因为即使是猎豹(地球上奔跑速度最快的陆地动物)也只能达到每秒23倍体长的速度!PC版:https://www.cnbeta.com/articles/soft/1316387.htm手机版:https://m.cnbeta.com/view/1316387.htm

封面图片

研究人员制作出会呼吸会出汗的机器人 全身35个独立感应区

研究人员制作出会呼吸会出汗的机器人全身35个独立感应区目前,全球有10个“安迪”人体模型机器人。许多机器人是隶属于运动服制造商并用于测试的。“安迪”的开发目的主要在于让研究人员更好地了解高温对人体的影响,以及是什么让炎热的天气如此致命。此外,“安迪”可以模仿人体的热功能,拥有35个不同的表面区域,所有表面区域均由温度传感器、热通量传感器和会出汗的毛孔单独控制。今年夏天,“安迪”将与科学家开发的生物气象热机器人MaRTy组队。MaRTy可揭示建筑环境的变化如何改变传递到人体上的热量,而“安迪”可揭示人体对热的反应。...PC版:https://www.cnbeta.com.tw/articles/soft/1372609.htm手机版:https://m.cnbeta.com.tw/view/1372609.htm

封面图片

工程人员实现让软体机器人运动的一种新方法

工程人员实现让软体机器人运动的一种新方法"毛毛虫的运动是由其身体的局部曲率控制的--当它把自己往前拉的时候,它的身体曲线与它把自己往后推的时候不同,"关于这项工作的一篇论文的通讯作者、北卡罗来纳州立大学机械和航空航天工程系安德鲁-亚当斯特聘教授朱勇说。"我们从毛虫的生物力学中获得灵感,模仿这种局部曲率,并使用纳米线加热器来控制毛虫机器人的类似曲率和运动。朱说:"设计能够在两个不同方向上移动的软体机器人是软体机器人技术的一个重大挑战。嵌入式纳米线加热器使我们能够以两种方式控制机器人的运动。我们可以通过控制软体机器人中的加热模式来控制机器人的哪些部分弯曲。而且我们可以通过控制施加的热量来控制这些部分弯曲的程度。"毛毛虫机器人由两层聚合物组成,它们在受热时反应不同。底层在受热时收缩,或者说收缩。顶层在受热时膨胀。一个银纳米线的图案被嵌入膨胀的聚合物层中。该图案包括研究人员可以施加电流的多个引线点。研究人员可以通过向不同的引出点施加电流来控制纳米线图案的哪些部分发热,并且可以通过施加更多或更少的电流来控制发热量。"我们证明了毛毛虫机器人能够将自己向前拉,并将自己向后推,"该论文的第一作者、北卡罗来纳州的博士后研究员ShuangWu说。"一般来说,应用的电流越大,它在任何一个方向上的移动速度就越快。然而,我们发现有一个最佳周期,它给了聚合物冷却的时间--有效地让'肌肉'在再次收缩之前放松。如果我们试图让毛毛虫机器人循环得太快,身体在再次收缩之前没有时间'放松',这就损害了它的运动。"研究人员还证明,毛毛虫机器人的运动可以被控制,以至于用户能够将其引导到一个非常低的缝隙下--类似于引导机器人滑到门下。从本质上讲,研究人员可以控制向前和向后的运动,以及机器人在该过程中的任何一点向上弯曲的高度。"这种在软体机器人中驱动运动的方法是高度节能的,我们有兴趣探索如何使这个过程更加有效,"朱说。"接下来的其他步骤包括将这种软体机器人运动的方法与传感器或其他技术相结合,以用于各种应用--如搜索和救援设备。"...PC版:https://www.cnbeta.com.tw/articles/soft/1358717.htm手机版:https://m.cnbeta.com.tw/view/1358717.htm

封面图片

MIT研究人员正在设计能够自我搭建的机器人

MIT研究人员正在设计能够自我搭建的机器人该系统的中心是体素(体积像素的简称,一个从计算机图形学中借来的术语),它携带的动力和数据可以在碎片之间共享。这些碎片构成了机器人的基础,移动到网格上进行进一步组装之前,可以抓取和连接其他体素。研究人员在《自然》杂志上发表的一篇相关论文中指出:"我们的方法挑战了大型建筑需要大型机器来建造的惯例,并且可以应用于今天需要大量资本投资的固定基础设施或完全不可行的领域。"图片来源/麻省理工学院为这些系统开发适当水平的人工智能是一个很大的障碍。机器人需要确定如何和在哪里建造,何时开始建造一个新的机器人,以及如何避免在这个过程中相互碰撞。论文的共同作者NeilGershenfeld在一份新闻稿中说:"当我们建造这些结构时,你必须建立起足够的人工智能,结构性电子学的见解可以使体素能够传输电力、数据以及力。"除了智能领域还需要努力外,硬件问题也仍然存在。该团队目前正在努力建立更强大的连接器,以保持体素牢固拼合在一起。麻省理工学院指出,最终这种机器人可以被用来确定最佳的建筑结构以节省大量的时间用于原型设计。虽然人们对3D打印房屋的兴趣越来越大,但如今那些需要的打印机器与正在建造的房屋一样大或更大。同样,这种结构改由成群的微小机器人组装的潜力可以带来好处。美国国防部高级研究计划局也对这项工作感兴趣,因为它有可能被用来自主建造海岸保护结构以防止侵蚀和海平面上升。美国宇航局和美国陆军研究实验室已经参与资助该项目。...PC版:https://www.cnbeta.com.tw/articles/soft/1333571.htm手机版:https://m.cnbeta.com.tw/view/1333571.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人