可用来抗击癌症的纳米机器人抗体首次进入人体试验阶段

可用来抗击癌症的纳米机器人抗体首次进入人体试验阶段该试验目前正在澳大利亚进行,如果按计划进行,纳米机器人抗体将能够对抗肿瘤周围的细胞,这些细胞可以帮助肿瘤,同时也能提高细胞抑制癌细胞生长的能力。这些抗体是由YanayOfran教授发明的,并以人类和动物的抗体为基础。Ofran说,这些纳米机器人抗体的目标是释放抗体的全部潜力。目前,抗体在医学上的使用只利用了这些天然疾病斗士所提供的一小部分能力。因此,找到一种方法来最大限度地发挥它们的能力,一直是一个长期目标。这些抗体可以保持多年的作用,它们安全、稳定,甚至易于使用,这也有助于使它们作为对抗癌症等多产疾病的一种方式更加诱人。这使得它们比我们最近看到的冒出来的杀癌病毒更有保质期。但是,抗体治疗并不只是与癌症有关。因为它们是在计算机上设计的,它们也可以被设计成提供其他功能,使这些纳米机器人抗体对多种功能有用。这种可编程性使它们能够调查其周围环境,甚至根据需要以不同的方式行事,以帮助抵御疾病、病毒等。它们是第一个进入人体试验的计算机设计的抗体,这对于Ofran和该领域的其他人正在努力实现的目标是一个巨大的成就。希望这些纳米机器人抗体能继续发挥作用,并在未来看到它们得到更广泛的应用。这也不是我们第一次看到纳米机器人出现在医学领域。此前,科学家们从青蛙细胞中制造了微小的纳米机器人,他们希望这将有助于防止某些病人的心脏病发作。了解更多:https://static1.squarespace.com/static/6000462c2a4b6f7ab28344fe/t/603e3344522efc449c13fc48/1614689114646/Computational+design+of+antibodies...PC版:https://www.cnbeta.com.tw/articles/soft/1333579.htm手机版:https://m.cnbeta.com.tw/view/1333579.htm

相关推荐

封面图片

纳米机器人手术刀群可从内部粉碎脑癌细胞

纳米机器人手术刀群可从内部粉碎脑癌细胞胶质母细胞瘤肿瘤生长迅速,侵入局部脑组织,并对化疗和放疗产生抗性,使其非常难以对抗。此外,任何遗留的癌细胞往往会报复性地返回,尽管正在努力防止这种情况的发生。在以前工作的基础上,多伦多大学机器人研究所和病童医院(SickKids)的研究人员用氧化铁颗粒填充碳纳米管,使其具有磁性。然后他们在碳纳米管上涂抹了一种抗体,使碳纳米管能够与胶质母细胞外部的一种蛋白质结合。结合后,这些管子被癌细胞摄取。接下来,通过激活癌细胞附近的磁场,这些管子被制成旋转,对细胞的内部结构造成破坏--特别是对它们的线粒体,它从根本上提供细胞能量。实际上,这些管子就像数以千计的迷你手术刀,从内部切开癌细胞。在使用小鼠的测试中,研究人员看到肿瘤大小明显减少。他们还能够将啮齿动物的中位寿命从大约22天延长到大约27天。研究报告的共同作者、SickKids发育与干细胞生物学项目的高级科学家XiHuang说:"通过使用深入癌细胞内部的纳米技术,机械纳米手术采用类似特洛伊木马的方法,可以让我们从内部摧毁肿瘤细胞。"该过程现在需要更多的微调,然后才能在人体上进行测试,但胶质母细胞瘤治疗领域的任何新发展,如根据饮食导致癌细胞自毁,对于任何曾经被这种疾病触及的人来说都是值得欢迎的。虽然是专门为帮助对抗胶质母细胞瘤而开发的,但Huang也表示,新的纳米机器人技术也可以被调整为对其他类型的肿瘤起作用。他说:"从理论上讲,通过改变抗体涂层并将纳米管重新定向到所需的肿瘤部位,我们有可能拥有精确摧毁其他癌症的肿瘤细胞的手段。"这项工作已经发表在《科学进展》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1357115.htm手机版:https://m.cnbeta.com.tw/view/1357115.htm

封面图片

DNA折叠纳米机器人可制造无限的自身副本

DNA折叠纳米机器人可制造无限的自身副本微型纳米机器人已经研制成功,它们可以抓住DNA的微小片段并将其组装成新的纳米机器--包括自身的副本来自纽约大学、宁波慈溪生物医学工程研究所和中国科学院的研究小组表示,这些机器人超越了以往只能将碎片组装成二维形状的机器人。新机器人能够使用"多轴精确折叠和定位","进入三维空间,获得更多自由度"。这些纳米机器人通常被视为制造药物、酶和其他化学物质的潜在方法,有可能在人体细胞内制造。但研究人员特别指出,这些机器可以"自我复制整个三维结构和功能"。仅由四股DNA构建的三维自我复制纳米机器人它们并不是完全独立的;这些机器人虽然是"可编程"的,但它们是在外部控制的温度和紫外线照射下行动的,它们需要紫外线来"焊接"它们正在组装在一起的DNA片段。在这一点上,人类与"灰色粘质"大启示之间的另一个障碍是,如果没有足够的所需精确DNA片段,它们就无法复制自己,甚至无法复制其他任何东西。尽管如此,这仍然是非常令人难以置信的事情,也让我们看到了未来以惊人速度向我们冲来的可能性。...PC版:https://www.cnbeta.com.tw/articles/soft/1403011.htm手机版:https://m.cnbeta.com.tw/view/1403011.htm

封面图片

抗击癌症的纳米粒子:与疾病作斗争的新武器

抗击癌症的纳米粒子:与疾病作斗争的新武器"我们的研究有两个创新之处:发现了一个新的治疗靶点和一种新的纳米载体,在选择性地传递免疫疗法和化疗药物方面非常有效,"资深作者、皮特大学药学院制药科学教授、UPMC希尔曼癌症中心调查员SongLi医学博士说。"我对这项研究感到兴奋,因为它具有高度的转化性。我们还不知道我们的方法是否对病人有效,但我们的发现表明有很大的潜力"。含有化疗药物FuOXP和阻断Xkr8表达的新型免疫疗法siRNA的纳米粒子的电子显微镜图像。资料来源:Chen等人,2022年,《自然-纳米技术》,10.1038/s41565-022-01266-2化疗是癌症治疗的支柱,但残留的癌细胞会持续存在并导致肿瘤复发。这个过程涉及一种叫做磷脂酰丝氨酸(PS)的脂质,它通常存在于肿瘤细胞膜的内层,但在化疗药物的作用下会迁移到细胞表面。在表面,PS作为一种免疫抑制剂,保护剩余的癌细胞不受免疫系统的影响。皮特大学的研究人员发现,用化疗药物氟尿嘧啶和奥索铂(FuOXP)进行治疗会导致Xkr8的水平增加,这种蛋白质控制PS在细胞膜上的分布。这一发现表明,阻断Xkr8将阻止癌细胞将PS分流到细胞表面,使免疫细胞能够清除化疗后残留的癌细胞。化疗FuOXP如何导致肿瘤的免疫抑制的拟议策略(图片左侧),但一种阻断一种叫做Xkr8的蛋白质表达的新型免疫疗法可以重新激活免疫系统(图片右侧)。新研究发现,FuOXP导致Xkr8的水平增加,这种蛋白质能将PS重新分配到细胞表面,由于更多的T调节细胞和促进肿瘤的M2巨噬细胞而导致免疫抑制。然而,当研究人员用siRNA阻断Xkr8的表达时,PS仍然在细胞膜的内层,通过提高抗肿瘤的T细胞、M1巨噬细胞和树突状细胞的数量来增强免疫系统。资料来源:Chen等人,2022年,自然-纳米技术,10.1038/s41565-022-01266-2在最近发表在《细胞报告》上的一项独立研究中,皮特大学免疫学助理教授Yi-NanGong博士也发现Xkr8是一个新的治疗目标,可以提高抗肿瘤免疫反应。Li和他的团队设计了被称为短干扰RNA(siRNA)的遗传代码片段,它关闭了特定蛋白质的生产--在这种情况下是Xkr8。在将siRNA和FuOXP一起包装成双效纳米粒子后,下一步是将它们靶向肿瘤。SongLi,M.D.,Ph.D.,皮特大学药学院药物科学教授和UPMC希尔曼癌症中心调查员。纳米粒子通常太大,无法穿过健康组织中完整的血管,但它们可以到达癌细胞,因为肿瘤有时有发育不良的血管,其孔洞允许它们通过。但是这种针对肿瘤的方法是有限的,因为许多人类肿瘤没有足够大的孔让纳米粒子通过。Li说:"就像一艘渡船把人们从河的一边运到另一边一样,我们想开发一种机制,让纳米粒子不依靠孔洞就能穿过完整的血管。"为了开发这样的渡船,研究人员用硫酸软骨素和PEG装饰了纳米粒子的表面。这些化合物通过与肿瘤血管和肿瘤细胞上常见的细胞受体结合,延长它们在血液中的停留时间,从而帮助纳米粒子瞄准肿瘤,避开健康组织。荧光显微镜图像显示FuOXP-siRNA纳米颗粒(红色)被小鼠结肠癌细胞有效吸收。细胞核显示为蓝色圆圈。资料来源:Chen等人,2022年,自然-纳米技术,10.1038/s41565-022-01266-2当注射到小鼠体内时,大约10%的纳米颗粒进入了目标肿瘤--比大多数其他纳米载体平台有了明显的改善。以前对已发表的研究的分析发现,平均来说,只有0.7%的纳米粒子剂量到达它们的目标。与单独含有化学药物FuOXP的纳米颗粒相比,双效纳米颗粒极大地减少了免疫抑制PS向细胞表面的迁移。接下来,研究人员在结肠癌和胰腺癌的小鼠模型中测试了他们的平台。与接受安慰剂或FuOXP剂量的动物相比,接受含有FuOXP和siRNA的纳米粒子治疗的动物具有更好的肿瘤微环境,有更多的抗癌T细胞和更少的免疫抑制调节性T细胞。因此,与只接受一种疗法的动物相比,接受siRNA-FuOXP纳米粒子的小鼠显示出肿瘤大小的急剧下降。这项研究还指出了将FuOXP-siRNA纳米粒子与另一种称为检查点抑制剂的免疫疗法相结合的潜力。PD-1等免疫检查点就像免疫系统的刹车,但检查点抑制剂的作用是释放刹车,帮助免疫细胞对抗癌症。研究人员发现,含有或不含siRNA的FuOXP纳米粒子增加了PD-1的表达。但当他们加入一种PD-1抑制剂药物时,这种组合疗法对小鼠的肿瘤生长和生存有了极大的改善。由于他们的目标是将他们的新疗法转化为临床治疗,该团队现在正寻求通过更多的实验来验证他们的发现,并进一步评估潜在的副作用。...PC版:https://www.cnbeta.com.tw/articles/soft/1336363.htm手机版:https://m.cnbeta.com.tw/view/1336363.htm

封面图片

“平民价” 癌症 TIL 疗法进入临床试验

“平民价”癌症TIL疗法进入临床试验近日,君赛生物公司研发的基因修饰TIL(肿瘤浸润淋巴细胞)疗法Ⅰ期临床试验在复旦大学附属肿瘤医院启动,患有宫颈癌、已发生双肺转移的首例受试者签署了知情同意书。根据TIL疗法流程,参加临床试验的癌症患者将接受微创手术,获取体内肿瘤组织。君赛生物技术人员将从肿瘤组织里分离出肿瘤浸润淋巴细胞,进行体外培养、扩增、基因修饰等预处理,再把改造后的细胞“军队”回输到患者体内,让它们杀灭肿瘤。据悉,在我国上市的CAR-T细胞疗法售价高达100万元左右。君赛生物研发的TIL疗法有一个技术突破——不需要以病毒为载体进行基因修饰,从而大幅降低了细胞制备成本,增加了肿瘤细胞疗法的可及性。(解放日报)

封面图片

在临床试验中 多克隆抗体癌症疫苗让犬只存活率几乎翻了一番

在临床试验中多克隆抗体癌症疫苗让犬只存活率几乎翻了一番亨特是一只11岁的金毛巡回犬,在接受了耶鲁大学的犬用癌症疫苗治疗后,它已经两年没有患癌症了就像人类一样,癌症在狗身上也很常见,尤其是体型较大和年长的狗。但是,虽然人类可以使用的武器越来越多,犬类癌症患者的选择却不多。放疗和化疗很常见,但疗效参差不齐,加上费用和可及性的问题,很多狗狗还没来得及接受治疗就已经不行了。在这项新研究中,耶鲁大学的科学家们调整了现有的人类癌症治疗方法,以找到一种既能造福人类又能造福狗类的新方法,因为有些癌症在物种间具有共同特性。单克隆抗体是一种新兴的治疗方法,患者通过输注与表皮生长因子受体(EGFR)和表皮生长因子受体(HER2)结合的蛋白质,这两种蛋白质在结直肠癌或乳腺癌等多种癌症中过度表达。问题是,患者往往会对这些抗体产生抗药性,从而降低治疗效果。为了克服这一问题,这项新研究转而开始制造多克隆抗体--由多种免疫细胞制成的抗体,它们能与表皮生长因子受体/HER2的多个部分结合。研究人员发现了一种化合物可以做到这一点,随后在小鼠和狗身上进行了试验。事实证明,这种疗法非常成功,在过去八年里,已经开展了多项临床试验,涉及300多只狗,治疗方法与肿瘤结合,扰乱了肿瘤生长的通路。研究人员说,他们研制的犬用癌症疫苗几乎将某些类型癌症患犬的12个月存活率提高了一倍。例如,患有骨肉瘤的狗在确诊后接受化疗和其他常规治疗时,存活一年的几率只有35%,但癌症疫苗将这一几率提高到了60%。11岁的金毛猎犬亨特就是最好的证明。这只搜救犬在2022年被诊断出左前腿骨肉瘤,但在不幸截肢、接受化疗和新型癌症疫苗治疗后,据说两年来它活得快乐而充满活力。研究小组目前正计划开展进一步的研究,看看是否可以给健康的狗狗注射癌症疫苗,从一开始就预防癌症的发生,或者更早地阻止癌症的发生。只要能帮助我们的毛茸茸的朋友活得更长、更健康,对我们来说就是胜利。有关该临床试验的研究发表在《转化肿瘤学》(TranslationalOncology)杂志上。请观看下面视频中亨特的故事。...PC版:https://www.cnbeta.com.tw/articles/soft/1422627.htm手机版:https://m.cnbeta.com.tw/view/1422627.htm

封面图片

美国设计出可高效杀灭真菌病原体纳米机器人

美国设计出可高效杀灭真菌病原体纳米机器人美国科研人员设计出能在10分钟内高效杀灭常见真菌病原体的新型纳米机器人,为人类治疗真菌感染问题提供助力。新华社星期天(5月28日)报道,美国宾夕法尼亚大学日前发布新闻公报说,研究员设计出一种由氧化铁纳米酶制成的纳米机器人,可实现快速、精准杀灭白色念珠菌(Candidaalbicans)的效果。据了解,一些纳米材料具有抗真菌作用,但相关技术的效率和准确性不足,因此控制感染的效果不理想,还容易导致真菌产生耐药性。不过,这篇发表在德国《先进材料》杂志的新研究成功克服了上述缺点。研究员在以细胞球和动物组织样本进行测试后发现,纳米机器人能在十分钟内清除感染部位的白色念珠菌,这种纳米机器人能在磁场控制下精确到达指定位置。纳米酶是像生物酶一样具有催化作用的纳米颗粒,特定氧化铁纳米酶的性质与生物体内常见的过氧化物酶(Peroxidase)相似,能把过氧化氢(Hydrogenperoxid)分解成水和氧气,以产生可杀灭真菌的活性氧。研究发现,通过可编程算法精确调控纳米机器人的形状和运动模式,可以控制活性氧的水平。这种氧化铁纳米酶对真菌细胞的亲和力特别强,能与真菌牢固结合、集中杀灭,且不会影响没有被感染的部位。真菌感染问题在全球范围内愈发普遍,市面上仅有的一些药物正面临耐药性威胁。根据世界卫生组织(WHO)2022年发布的一份报告,白色念珠菌是对人类健康威胁最大的四种真菌病原体之一。

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人