研究人员首次在室温下实现深紫外激光二极管的连续波段放电

研究人员首次在室温下实现深紫外激光二极管的连续波段放电这项研究成果今天(11月24日)发表在期刊《应用物理学通讯》上,由2014年诺贝尔奖得主天野浩领导的研究小组与旭化成公司合作,在日本中部的名古屋大学材料与系统可持续发展研究所(IMaSS)进行。自20世纪60年代推出以来,经过几十年的研究和开发,激光二极管(LD)终于成功实现了商业化,用于波长从红外到蓝紫色的一些应用。这种技术的例子包括使用红外LD的光通信设备和使用蓝紫色LD的蓝光光盘。然而,尽管世界各地的研究小组都在努力,但没有人能够开发出深紫外LD。2007年以后,随着制造氮化铝(AlN)基板的技术的出现,才出现了一个关键的突破,这是一种用于生长紫外发光器件的氮化铝(AlGaN)薄膜的理想材料。科学家们在世界范围内首次展示了深紫外激光二极管在室温下的连续波放电。资料来源:IsseyTakahashi从2017年开始,天野教授的研究小组与提供2英寸AlN基板的旭化成公司合作,开始开发深紫外LD。起初,向设备中充分注入电流过于困难,阻碍了紫外-C激光二极管的进一步发展。但在2019年,该研究小组利用极化诱导的掺杂技术成功地解决了这个问题。他们首次生产出了一种短波长的紫外线-可见光(UV-C)LD,该器件以短脉冲电流运行。然而,这些电流脉冲所需的输入功率为5.2瓦。这对于连续波发光来说太高了,因为功率会导致二极管迅速升温并停止发光。但是现在,来自名古屋大学和旭化成的研究人员已经重塑了设备本身的结构,减少了激光器所需的驱动功率,使其在室温下的工作功率仅为1.1W。早期的设备被发现需要很高的工作功率,因为由于激光条纹处出现的晶体缺陷而无法形成有效的电流路径。但在这项研究中,研究人员发现,强烈的晶体应变产生了这些缺陷。通过巧妙地裁剪激光条纹的侧壁,他们抑制了这些缺陷,实现了有效的电流流向激光二极管的活性区域,并降低了工作功率。名古屋大学的产学合作平台,即未来电子学综合研究中心、变革性电子设施(C-TEFs),使新的紫外激光技术的开发成为可能。在C-TEFs下,来自旭化成等合作伙伴的研究人员可以共享名古屋大学校园内最先进的设施,为他们提供建造可重复的高质量设备所需的人员和工具。研究小组的代表ZhangZiyi在参与项目创建时,正在旭化成公司读二年级。"我想做一些新的事情,"他在接受采访时说。"当时大家都认为深紫外激光二极管是不可能的,但天野教授告诉我,'我们已经做到了蓝色激光,现在是紫外线的时候了'。"这项研究是所有波长范围的半导体激光器的实际应用和发展的一个里程碑。未来,紫外-C激光器可应用于医疗保健、病毒检测、颗粒物测量、气体分析和高清激光处理。"它在消毒技术方面的应用可能是开创性的,"Zhang说。"与目前的LED消毒方法不同,它的时间效率很低,激光可以在短时间内进行大面积的消毒,而且距离很远"。这项技术可能特别有利于需要消毒手术室和自来水的外科医生和护士。成功的结果已在《应用物理学通讯》杂志的两篇论文中报告。...PC版:https://www.cnbeta.com.tw/articles/soft/1333665.htm手机版:https://m.cnbeta.com.tw/view/1333665.htm

相关推荐

封面图片

我国科研团队钙钛矿发光二极管研究取得重大突破

我国科研团队钙钛矿发光二极管研究取得重大突破近日,我国科研团队在钙钛矿发光二极管(LED)研究领域取得重大突破。通过加快辐射复合速率,显著提高荧光量子效率,使钙钛矿LED外量子效率突破30%大关,接近实现产业化水平。相关研究成果的论文日前在国际学术期刊《自然》发表。钙钛矿半导体材料的LED是一类新兴的薄膜LED,具有加工工艺简便、高亮度高效率等特性,近年来在光电器件研究领域备受瞩目,成为全球新型发光与显示技术竞争的焦点。(新华社)

封面图片

我国学者制备出高效稳定钙钛矿发光二极管

我国学者制备出高效稳定钙钛矿发光二极管中国科学院宁波材料技术与工程研究所团队深挖机理、创新工艺,制备出一款高效稳定的钙钛矿发光二极管,相关论文5日发表于国际学术期刊《自然・光子学》。中国科学院宁波材料所向超宇研究员是论文通讯作者之一。他介绍说,钙钛矿材料是一种光电材料,具有光电性能优异、制备成本低的优点。与目前常见的OLED(有机发光二极管)相比,钙钛矿发光二极管可以将色彩纯度提升至少1倍。但这一材料运行稳定性较低,阻碍了应用发展。“这项研究结果将推动钙钛矿材料在发光显示领域的应用。”向超宇说。(新华社)

封面图片

构建分子通道:有机发光二极管(OLED)的突破性进展

构建分子通道:有机发光二极管(OLED)的突破性进展由于其特殊的化学结构,分子呈螺旋状排列。其结果是电子传导核心被屏蔽,从而提高了有机发光二极管的效率。资料来源:MPI-P影响这些材料性能的一个重要因素是存在少量无法完全去除的杂质。这些杂质(如氧分子)会阻碍电子在二极管内的移动,从而干扰光的产生过程。当电子被这些杂质困住时,其能量就会转化为热量而不是光。这种现象被称为"电荷捕获",主要影响蓝色有机发光二极管,导致其效率大幅降低。由马克斯-普朗克聚合物研究所所长保罗-布洛姆(PaulBlom)领导的团队最近利用一类新型分子解决了电荷捕获问题。这些分子由两个化学部分组成:一部分有利于电子传导,而另一部分对杂质不敏感。通过操纵分子的化学结构,可以实现特殊的空间排列:当几个分子连接在一起时,它们会形成一种"螺旋"状,即分子的电子传导部分形成内部,而外部则被分子的另一部分所屏蔽。从分子的角度看,这就像一根同轴电缆,内芯为电子传导部分,外芯为屏蔽部分。因此,包层为电子导电内核形成了一种"保护层",使其免受氧分子的侵入。这样,电子就可以沿着螺旋的中心轴快速、自由地运动,而不会被障碍物困住,就像高速公路上的汽车没有十字路口、红绿灯或其他障碍物一样。保罗-布洛姆说:"我们的新材料的一个特别之处在于,由于没有杂质造成的损耗,电子传输效率高,因此可以大大简化蓝色有机发光二极管的设计,同时保持高效率。"研究人员希望通过这种创新方法大大简化蓝色发光二极管的生产。他们的研究成果发表在《自然-材料》(NatureMaterials)杂志上,标志着有机发光二极管技术向前迈出了重要一步。...PC版:https://www.cnbeta.com.tw/articles/soft/1375127.htm手机版:https://m.cnbeta.com.tw/view/1375127.htm

封面图片

最具希望高温超导二极管或出现 可为量子计算等新兴行业提供动力

最具希望高温超导二极管或出现可为量子计算等新兴行业提供动力据科技日报,几十年来,超导体一直是物理学界研究的热点。但这些允许电子完美无损流动的材料,通常只在非常低的温度下(比绝对零度高几度)才表现出这种量子力学特性。美国哈佛大学研究团队展示了一种新策略,可制造和操纵铜酸盐高温超导体,为在以前无法获得的材料中设计新的超导形式扫清了道路。使用一种独特的低温器件制造方法,研究团队在最新一期《科学》杂志上报告了世界上第一个有希望的高温超导二极管。其本质是一种使电流单向流动的开关,由薄的铜酸盐晶体制成。从理论上讲,这样的设备可为量子计算等新兴行业提供动力。

封面图片

用于光通信与光计算 我国在国际上首创新型场效应调控光电二极管

用于光通信与光计算我国在国际上首创新型场效应调控光电二极管从中国科学技术大学获悉,该校孙海定教授课题组与武汉大学刘胜院士团队合作,在国际上首次提出了新型三电极光电PN结二极管结构,构筑载流子调制新方法,实现了第三端口外加电场对二极管光电特性的有效调控。相关研究成果日前在线发表于期刊《自然・电子学》。研究人员表示,由于该器件结构和制作工艺十分简单,该新型场效应调控光电二极管架构的提出,可被广泛应用于其他由各种半导体材料制成的有源光电子集成芯片和器件平台上,对推动下一代高速和多功能光电集成芯片的发展有着重要价值。(科技日报)

封面图片

【中科院研制超高分辨率量子点发光二极管打开“元宇宙”通路】

【中科院研制超高分辨率量子点发光二极管打开“元宇宙”通路】福州大学教授李福山团队联合中科院宁波材料技术与工程研究所研究员钱磊,将有序分子自组装技术和转移印刷技术相结合,制备出高性能的超高分辨率量子点发光二极管。相关成果日前在线发表于《自然—光子学》。开发具有千级乃至万级PPI(每英寸所拥有的像素数目)、可在微小空间输出海量信息的极高分辨率显示器,是进入“元宇宙”的重要途径。该研究中,科研人员利用有序分子自组装技术实现了致密无缺陷的量子点单层膜,并结合转移印刷技术实现了亚微米级像素的超高分辨率量子点显示,其最高分辨率达到~25000PPI(人眼极限分辨率约为300PPI),可轻松制备出亚微米级像素的超高分辨率量子点发光二极管。

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人