新的CRISPR基因编辑系统可以批量“拖放”DNA 损伤更小成功率更高

新的CRISPR基因编辑系统可以批量“拖放”DNA损伤更小成功率更高在过去的几十年里,科学家们将这一系统调整为一个强大的基因工程工具。CRISPR系统由一种酶组成,通常是一种叫做Cas9的酶,它可以切割DNA,还有一个短的RNA序列,指导该系统在基因组的正确部分进行切割。这可以用来剪掉有问题的基因,如那些导致疾病的基因,并可以用其他更有益的基因来替代它们。问题是这一过程涉及破坏DNA的两条链,由于细胞可能很难按原定计划重新修补,从而导致非预期的改变和被编辑细胞的更高癌症风险。因此,麻省理工学院的研究人员着手开发一种新版本的工具,它对基因组更加温和。与现有CRISPR-Cas9的"剪切和粘贴"方法不同,该团队将这种新方法描述为更像一个"拖放"系统。PASTE,即"通过特定位点靶向元素的可编程添加",仍然使用Cas9酶在引导RNA指定的位置切割DNA,但不同的是,新系统先切割一条链,"粘贴"后然后再切割另一条链,而不是同时切割两条链,这使其稳定性更佳。新基因的插入由称为丝氨酸整合酶的酶处理,这些酶被病毒用来感染细菌并将其DNA插入目标的基因组--具有讽刺意味的是,CRISPR的起源是细菌对这些确切攻击的防御。这些整合酶自然地寻找目标基因组中的特定序列,因此在PASTE系统进行温和切割后,它插入了整合酶正在寻找的小"着陆点"序列。最后,整合酶将其DNA有效载荷插入该部位的基因组中。在一系列测试中,该团队将PASTE系统用于人类肝脏细胞、T细胞和淋巴细胞,将13个不同的基因插入基因组的9个位置。其成功率高达60%,并且在插入部位产生的错误非常少。然而,在具有"人性化"肝脏的小鼠身上进行的试验只在大约2.5%的细胞中起作用。这种技术不仅更温和,而且可能更安全,但该团队表示,它能够一次插入大量的DNA--在测试中可以实现高达36000个碱基对的处理。这可能使它对替换有缺陷的基因特别有用,如那些导致囊性纤维化或亨廷顿氏病的基因。"这是一种可能针对这些真正难以治疗的疾病的新的遗传方式,"该研究的高级作者OmarAbudayyeh说。"我们想努力实现基因治疗在其最初成立时应该做的事情,那就是替换基因,而不仅仅是纠正个别突变。"虽然在改进PASTE之前还有很多工作要做,它可以被用于治疗这些疾病,但也不乏其他正在开发的CRISPR的温和变体。这包括CRISPR-Combo、MAGESTIC、RLR,以及使用噬菌体或跳跃基因的系统。这项新研究发表在《自然-生物技术》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1333695.htm手机版:https://m.cnbeta.com.tw/view/1333695.htm

相关推荐

封面图片

潜在的CRISPR替代性基因编辑工具在动物体内自然出现

潜在的CRISPR替代性基因编辑工具在动物体内自然出现CRISPR基因编辑系统最初是从细菌中分离出来的,细菌使用一种叫做Cas9的酶来剪掉病毒的一部分DNA,并将其储存起来,以帮助它们在未来抵御这种感染。2012年,科学家们取得了诺贝尔奖的发现,即这一过程可以被劫持来编辑活细胞中的DNA,此后被用来治疗疾病,种植更好的作物,以及调整细菌来做一些重要的事情。Fanzor蛋白(灰色、黄色、浅蓝色和粉红色)与ωRNA(紫色)、目标DNA(红色)和非目标DNA(蓝色)的模型图正如CRISPR迄今为止所取得的成功一样,科学家们想知道在我们的一些近亲中是否有其他类似的系统在发挥作用--毕竟在生命之树上,细菌离我们是最远的。而现在,麻省理工学院的研究人员已经发现了一组蛋白质,它们以同样的方式发挥作用,但区别在于可以在动物身上实现。这一突破始于该团队之前的工作,当时在细菌中发现了一类名为OMEGA的新的DNA切割酶。在该研究中,研究人员注意到OMEGAs和一组称为Fanzor的蛋白质之间的相似性。重要的是,Fanzor蛋白出现在真核生物中,真核生物是包括动物以及人类在内的生命领域。在新的研究中,该团队从真菌、藻类、变形虫和蛤蜊中分离出Fanzor,并调查了它们的生化作用,这些蛋白质被发现使用附近的被称为ωRNAs(ω-RNAs)的RNA片段来切割DNA。这标志着这种机制首次在真核生物中被发现。研究人员发现,Fanzor蛋白是在"跳跃基因"内编码的--那些可以比其他基因更自由地移动,这表明,它们最初是在非常遥远的过去从细菌中转移过来的。在接下来的测试中,科学家们调查了Fanzors作为基因编辑工具在人类细胞中的功能如何。它能够在基因组中可编程的地方插入和删除基因,效率约为18%,这比CRISPR低得多,但后者已经建立起了十年的技术改进。另一方面,Fanzor在选择性方面优于CRISPR,它在切割目标DNA时不会损坏附近的片段。该团队说,Fanzor蛋白可能成为基因编辑工具箱中的一个关键工具,它的发现表明还有更多隐藏在外面的东西有待发现。该研究发表在《自然》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1368717.htm手机版:https://m.cnbeta.com.tw/view/1368717.htm

封面图片

超越CRISPR 新基因编辑工具SeekRNA面世 精确切割靶点插入序列

超越CRISPR新基因编辑工具SeekRNA面世精确切割靶点插入序列IS1111和IS110家族。图片来源:《自然·通讯》网站CRISPR已广泛应用于多个领域。它降低了人类疾病检测成本,提高了检测速度,帮助科学家开发出嵌合抗原受体T细胞(CAR-T)免疫疗法以治疗癌症。研究人员解释说,CRISPR的工作原理是让靶DNA的两条链断裂,然后借助其他蛋白或DNA修复机制插入新DNA序列,但这可能产生错误。SeekRNA则能在不使用任何其他蛋白的情况下,精确切割靶点并插入新DNA序列。这使其相对CRISPR来说更加精确可靠,减少了潜在错误。SeekRNA源于名为IS1111和IS110的天然插入序列家族,该家族成员在细菌和古菌(无核细胞)中广泛存在。大多数插入序列蛋白很少有或没有靶选择性,但这些家族的成员具有很高的靶特异性。利用这一特性,seekRNA能适应任何基因组序列,并以精确方式插入新DNA。目前,研究人员已经在细菌中成功测试了seekRNA的有效性。接下来,他们计划研究该技术能否适用于人类体内更为复杂的真核细胞。他们目前使用的SeekRNA包含由350个氨基酸组成的小蛋白和由70—100个核苷酸组成的RNA链。这种尺寸的系统可以方便地集成到纳米级生物递送载体(囊泡或脂质纳米颗粒)上,有效递送到目标细胞中。此外,其他科研团队也在对IS1111和IS110家族的基因编辑潜力开展类似研究。研究人员还计划通过直接实验室采样和应用较短的seekRNA,进一步探索该技术的潜力。...PC版:https://www.cnbeta.com.tw/articles/soft/1435923.htm手机版:https://m.cnbeta.com.tw/view/1435923.htm

封面图片

研究人员复活26亿年前的CRISPR酶 仍然可以编辑细胞

研究人员复活26亿年前的CRISPR酶仍然可以编辑细胞当一个细菌被病毒感染时,它将使用CRISPR酶来剪下病原体DNA的一个片段并储存起来。如果该细菌以后遇到相同类型的病毒,它将根据该DNA片段识别它,并能够更有效地对抗它。大约十年前,科学家们发现他们可以共同采用这种识别和切割DNA的机制,并利用它来开发一种强大的基因编辑工具。由此产生的CRISPR-Cas9系统像一把分子剪刀一样工作,从细胞中剪下DNA部分,并用新的DNA替换。这正显示出它是治疗疾病、改善作物和为耐人寻味的新目的设计细菌的强大工具的前景。在这项新的研究中,西班牙CICnanoGUNE的研究人员开始绘制微生物中CRISPR的进化图。为此,他们使用了一种被称为祖先序列重建的技术,其中专门设计的算法被用来分析和比较生物体的基因组,并确定其共同祖先的基因组会是什么样子。由此,研究小组确定并合成了古代微生物可能会使用的Cas酶,这些酶可以追溯到3700万到26亿年前。在人类细胞中的测试证实,这些祖先的酶在进行基因编辑时仍有功能。也许不足为奇的是,这些古老的酶比现代的酶简单得多--这是进化过程中的一个指纹。但耐人寻味的是,这可能使它们比它们的后代更具有多功能性,后者已变得越来越有针对性地用于特定的利基。该研究的首席研究员RaúlPérez-Jiménez说:"目前的系统是高度复杂的,并且适应于在一个细菌内发挥作用。当该系统在这种环境之外被使用时,例如在人类细胞中,它会被免疫系统拒绝,而且还有某些分子限制,限制了它的使用。奇怪的是,在祖先的系统中,其中一些限制消失了,这使这些系统在新的应用中具有更大的通用性。"该团队表示,这一突破可用于生产新的酶,以目前的酶无法编辑的基因组区域为目标,有可能为疾病治疗和其他基因编辑的进展开辟新的途径。该研究发表在《自然-微生物学》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1337439.htm手机版:https://m.cnbeta.com.tw/view/1337439.htm

封面图片

简单的新策略提高了CRISPR基因编辑的安全性和精确性

简单的新策略提高了CRISPR基因编辑的安全性和精确性这种方法解决了CRISPR技术的一个关键问题:在特定点切割基因组,然后再将其重新接合,这本身就存在着破坏DNA的风险,可能会造成大规模、不可预测的破坏。为了缓解这一问题,由卡塔赫纳科技大学干细胞生物学家李默领导的团队研究了在人类干细胞中进行CRISPR编辑后导致大量基因组缺失的DNA修复途径。通过分析,他们发现了一种被称为"微同源物介导的末端连接"(MMEJ)的过程,这是一种容易出错的机制,虽然能够修复DNA的断裂,但往往会留下大的缺失。研究人员分析了与MMEJ过程有关的各种基因,发现有两个基因在这些不必要的删除事件中起着核心但相反的作用。其中一个名为POLQ的基因被证明会加剧CRISPR编辑后的大缺失风险。而另一个名为RPA的基因则成为具有保护作用的基因组守护者。通过使用抑制POLQ的药物或通过提高RPA表达的基因技术来操纵这些基因,KAUST团队就能在不影响基因组编辑效率的情况下减少有害大缺失的发生,从而保持编辑后干细胞基因组的完整性。"这种简单易用的方法可以减少这些有害的DNA大缺失发生的几率,"李默实验室的前博士生袁宝磊说,他与实验室的毕崇伟和田业腾是这项研究的设计者之一。此外,研究还发现这些干预措施还能提高同源定向修复的效率,而同源定向修复机制因其能够在不增加意外突变的情况下实现精确的基因组编辑而闻名。在涉及干细胞的实验中,这一点非常明显,这些干细胞携带与镰状细胞病和威斯科特-阿尔德里奇综合征(Wiskott-AldrichSyndrome)这两种遗传性血液病有关的两个基因突变。通过调节POLQ或RPA,研究人员在这些细胞中实现了高度精确和可靠的基因编辑。李说,这些发现标志着在完善CRISPR技术方面迈出了重要一步。他说:"这确实令人兴奋,因为这意味着我们离更安全、更有效地治疗遗传疾病越来越近了。"随着这一创新战略的临时专利申请,该团队将继续探索更多不良突变背后的机制,并磨练技术,使CRISPR更安全、更高效。"实现高效和安全仍然是一个需要进一步开发的挑战,"李说,"我们的实验室始终站在最前沿,寻求新颖的解决方案。"DOI:10.1186/s12915-024-01896-z编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1432348.htm手机版:https://m.cnbeta.com.tw/view/1432348.htm

封面图片

CRISPR-Cas 基因编辑在实验室中完全消除 HIV 病毒

CRISPR-Cas基因编辑在实验室中完全消除HIV病毒荷兰阿姆斯特丹大学的研究人员报告,他们利用CRISPR基因编辑技术,成功的从受感染细胞中消除了HIV病毒。HIV治疗的重大挑战之一是该病毒具有将自身基因组整合到宿主DNA中的能力,尽管目前有多种有效的抗病毒药物用于治疗HIV感染,但只能抑制HIV在人体内的复制,无法将其清除,故患者需要接受终身抗病毒治疗,因为一旦抗病毒治疗停止,HIV可能会卷土重来。HIV可以感染体内不同类型的细胞和组织,每种细胞和组织都有其独特的环境和特征。在这项研究中,荷兰研究人员使用“分子剪刀”与两种gRNA(向导RNA)来对抗所有已知的HIV毒株中保持相同的病毒基因组部分,并成功治愈了HIV感染者的T细胞。荷兰研究人员证明,当在培养皿中的免疫细胞上进行测试时,他们的CRISPR系统可以灭活所有HIV病毒,将其从免疫细胞中清除。研究人员强调他们的工作仍然只是“概念证明”,不会很快成为HIV的治疗方法。来源,频道:@kejiqu群组:@kejiquchat

封面图片

减少不必要的突变 新技术为更安全的基因编辑打开了大门

减少不必要的突变新技术为更安全的基因编辑打开了大门来自日本九州大学和名古屋大学医学院的研究人员开发出了一种优化的基因组编辑方法,它可以大大减少CRISPR-Cas9中不需要的突变和毒性。这种被称为"保障性gRNA"([C]gRNA)的新技术展示了安全和高效基因治疗的潜力,可应用于治疗像纤维发育不良性骨质增生这样的遗传疾病。他们的研究已经发表在《自然-生物医学工程》上。以CRISPR-Cas9为中心的基因组编辑技术已经彻底改变了食品和医药行业。在该技术中,Cas9核酸酶是一种切割DNA的酶,它与合成的引导RNA(gRNA)一起被引入细胞中,引导酶到达所需的位置。通过切割基因组,不需要的基因可以被删除,而新的(功能性)基因可以被轻松而快速地加入进来。基因组编辑的一个缺点是,人们越来越担心突变和脱靶效应。这通常是由于酶瞄准的基因组位点具有与目标位点相似的序列而造成的。同样,当基因被改变时,染色体水平的突变也会发生,这已经阻碍了基因治疗癌症的临床试验,甚至导致接受肌肉萎缩症治疗的病人死亡。该小组假设,目前使用Cas9的编辑协议会造成过度的DNA裂解,从而导致一些突变。为了验证这一假设,由九州大学的MasakiKawamata助理教授和名古屋大学医学研究生院的HiroshiSuzuki教授组成的小组在小鼠细胞中构建了一个名为"AIMS"的系统,该系统对每条染色体分别评估了Cas9的活性。他们的结果显示,常用的方法与非常高的编辑活性有关。他们确定这种高活性导致了一些不必要的副作用,因此他们寻找能够抑制这种活性的gRNA修改方法。他们发现,在gRNA的5′端增加一个额外的胞嘧啶延伸是对过度活性的有效"保障",并允许控制DNA的裂解。他们称这种微调系统为'保障性gRNA'([C]gRNA)"。结果是惊人的,使用他们的新技术后,脱靶效应和细胞毒性减少了,单allele选择性编辑的效率提高了,同源定向修复的效率也提高了,这是DNA双链断裂修复最常用的机制。为了测试其在医疗环境中的有效性,他们研究了一种名为纤维发育不良的罕见疾病。利用小鼠模型,他们能够创造出与人类版本的疾病相同的基因类型。然后,利用患者衍生的iPS细胞,他们能够精确地修复导致该疾病的疾病相关等位基因中具体到单个核苷酸的损伤,证明了他们的技术作为一种安全和高效的基因治疗方法的有用性。该团队还构建了第一个关于各种基因组编辑模式和Cas9活性之间相关性的数学模型,这将使用户能够模拟整个细胞群中基因组编辑的结果。这一突破将使研究人员能够确定使效率最大化的Cas9活性,减少所需的巨大成本和劳动。"我们建立了一个新的基因组编辑平台,通过开发具有适当Cas9活性的活性调节[C]gRNAs,可以最大限度地提高所需的编辑效率。此外,我们发现'保障gRNA'可以通过调节gRNA的活性应用于各种需要gRNA的CRISPR工具,如使用Cas12a的工具,它具有不同的DNA裂解机制,"Suzuki教授说。"对于使用Cas9激活或抑制感兴趣的基因的技术,如CRISPR激活和CRISPR干扰,过度诱导或抑制基因的表达可能没有用,甚至对细胞有害。通过[C]gRNA控制表达水平是一项重要技术,可用于各种应用,包括实施精确的基因治疗"。...PC版:https://www.cnbeta.com.tw/articles/soft/1354925.htm手机版:https://m.cnbeta.com.tw/view/1354925.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人