“韦伯望远镜”首次观测系外TRAPPIST-1七行星系统

“韦伯望远镜”首次观测系外TRAPPIST-1七行星系统迄今为止,这只是初步结果,还不能说明这些行星的大气层实际上含有什么。但如果这些大气层含有二氧化碳或甲烷等有趣分子的稠密大气层,那么这台耗资100亿美元的望远镜将能够在未来数月和数年内探测到它们。2017年绘制的TRAPPIST-1行星系统,为天文学家提供了许多机会,从而了解围绕一颗恒星运行的地球大小的行星的形成和演化。这颗恒星相对较暗、温度较低,7颗行星与它的距离比水星与太阳的距离还要近。JWST在其科学运行的第一年就观测了所有行星。其中许多观测结果已经完成,直到近日在JWST操作中心——太空望远镜科学研究所举行的研讨会上,这些观测结果才被公开展示。TRAPPIST-1行星的编号为b到h,其中b离恒星最近,h离恒星最远。12月13日,在马里兰州巴尔的摩举行的JWST首次成果研讨会上,加拿大蒙特利尔大学的天文学家BjornBenneke介绍了TRAPPIST-1g的首个JWST研究。到目前为止,该望远镜已经能够确定这颗行星可能没有富含氢气的大气层。由于密度低,这样的大气层体积会很大,因此更容易被发现。这可能意味着该行星有一个更稠密的大气层,由二氧化碳等更重分子组成,或者根本没有大气层。JWST主要通过观察行星在恒星前面经过时如何过滤光线来研究行星大气层:特定分子以特有的方式吸收星光。组成大气层的分子可以表明行星是如何演化的,以及它的表面是否有生命。研究人员需要通过更多的观察和更长的分析时间确定TRAPPIST-1g是否具有大气层,如果有,是由什么组成的。TRAPPIST-1的数据比从更大的系外行星收集的数据更难分析,包括WASP-39b——一颗JWST详细研究过的体积接近木星的行星。TRAPPIST-1的行星则要小得多,来自其大气层的信号也更难提取出来。恒星中的磁扰动也会产生干扰数据解释的信号。在会议海报上,蒙特利尔大学天文学家OliviaLim描述了JWST对该系统最里面的行星TRAPPIST-1b的两次观测。她的团队也一直无法梳理出表明该行星大气成分的信号。但初步研究表明,与行星1g一样,它可能没有膨胀的富氢大气层。“明年,我们将有一张全家福。”NASA戈达德太空飞行中心天文学家KnicoleColón表示,关于这一非凡行星系统的更多研究正在进行中。...PC版:https://www.cnbeta.com.tw/articles/soft/1335759.htm手机版:https://m.cnbeta.com.tw/view/1335759.htm

相关推荐

封面图片

詹姆斯·韦伯望远镜已探测到TRAPPIST红矮星内层 并无大气活动迹象

詹姆斯·韦伯望远镜已探测到TRAPPIST红矮星内层并无大气活动迹象艺术家对TRAPPIST-1系统的印象,同名恒星位于中心,最内侧的行星TRAPPIST-1b位于前景中。图/BenoîtGougeon,蒙特利尔大学詹姆斯-韦伯接替了老化的哈勃望远镜,它巨大的镜面能收集到比以往任何望远镜都多的光线,从而拍摄出高分辨率的图像,而它的红外感应装置则能让它窥探到更深的空间和时间。总之,JWST已被证明在提供有关恒星、行星和宇宙本身早期历史的新见解方面具有不可估量的价值。2017年,天文学家发现了一个由七颗地球大小的系外行星组成的非凡系统,它们围绕着附近一颗名为TRAPPIST-1的红矮星运行,距离只有40光年。自然而然地,科学家们开始好奇,这些迷人的系外行星通过尚未发射的JWST的眼睛会是什么样子。很快,这个系统就成为了望远镜的首批正式科学目标之一,目标是研究这些行星的潜在宜居性。现在,它利用一种叫做透射光谱学的方法,首次瞥见了TRAPPIST-1b的最内层世界。当行星从主恒星前方经过时,光线会穿过任何可能存在的大气层,根据空气中分子的不同,阻挡不同波长光线的程度也不同。通过对光谱的分析,天文学家可以确定大气层的成分,并从中获取其他信息,如行星是否适宜居住。研究小组从中没有发现TRAPPIST-1b有大气活动的迹象--检测到的光谱可以完全归因于恒星的活动。这一发现与今年早些时候进行的其他韦伯观测结果一致,这些观测结果测量了这颗行星的温度,发现不太可能存在大气层。不过,也不能排除它拥有由纯水、二氧化碳或甲烷组成的稀薄大气层的可能性。"我们的观测没有发现TRAPPIST-1b周围有大气层的迹象,"该研究的作者RyanMacDonald说。"这告诉我们,这颗行星可能是一块光秃秃的岩石,在大气层的高处有云层,或者有像二氧化碳这样非常重的分子,使得大气层太小而无法探测到。但我们看到的是,恒星绝对是主导我们观测的最大影响因素,这将对系统中的其他行星产生完全相同的影响。"TRAPPIST-1b主要是对其更有趣的邻居--TRAPPIST-1d、e和f--进行技术测试,它们都在恒星的宜居带内运行。研究人员说,这项研究帮助他们了解了如何解释恒星的冷热点、耀斑和其他可能影响大气读数的活动。这项研究发表在《天体物理学杂志通讯》上。...PC版:https://www.cnbeta.com.tw/articles/soft/1386409.htm手机版:https://m.cnbeta.com.tw/view/1386409.htm

封面图片

韦伯望远镜首次在岩石“超级地球”上发现大气层

韦伯望远镜首次在岩石“超级地球”上发现大气层这幅艺术家的概念图展示了系外行星55Cancrie的模样。巨蟹座55号也被称为"杨森",是一颗所谓的超级地球,是一颗比地球大得多但比海王星小得多的岩质行星,它绕恒星运行的距离只有140万英里(0.015个天文单位),不到18个小时就能完成一个完整的轨道运行(水星距离太阳的距离是巨蟹座55号的25倍)。(水星距太阳的距离是巨蟹座55号距其恒星距离的25倍)该系统还包括四颗大型气体巨行星,位于巨蟹座,距地球约41光年。资料来源:NASA、ESA、CSA、拉尔夫-克劳福德(STScI)没有参与这项研究的美国麻省理工学院的行星科学家SaraSeager说,在类地行星周围发现大气层是系外行星研究的一个重要里程碑。地球稀薄的大气层对维持生命至关重要,能够发现类似类地行星上的大气层是寻找太阳系以外生命的重要一步。JWST探测到的这颗行星名为55Cancrie,它围绕着一颗12.6秒差距的类太阳恒星运行,被认为是一个超级地球。这颗比地球稍大的类地行星,半径约为地球的两倍,重量是地球的8倍多,大气层厚度约为地球半径的百分之几。这条光变曲线显示了巨蟹座55星系中的岩石行星55Cancrie(巨蟹座55星系中已知的五颗行星中距离恒星最近的一颗)移动到恒星背后时,巨蟹座55星系亮度的变化。这种现象被称为"次食"。当行星在恒星旁边时,恒星和行星日面发出的中红外光都能到达望远镜,因此系统显得更亮。当行星位于恒星后面时,行星发出的光被挡住,只有星光到达望远镜,导致视亮度降低。天文学家可以从恒星和行星的亮度总和中减去恒星的亮度,从而计算出有多少红外光来自行星的日侧。然后用它来计算日侧温度,推断行星是否有大气层。根据这一观测结果计算出的行星温度约为1,800开尔文(约2,800华氏度),大大低于行星没有大气层或只有稀薄岩石蒸汽大气层的预期温度。这种相对较低的温度表明,热量正在从行星的白天向夜晚散发,这可能是由富含挥发性物质的大气层造成的。资料来源:NASA、ESA、CSA、JosephOlmsted(STScI)、AaronBello-Arufe(NASA-JPL)55Cancrie不适合居住的另一个原因是它离恒星很近——大约是地球到太阳距离的1/65。然而,美国喷气推进实验室(JPL)的天体物理学家、论文合著者AaronBelloArufe说,它可能是研究最多的岩石行星。它对于岩石行星来说大很多,所以比太阳系外其他行星更容易研究。55Cancrie经过了充分的研究,JWST于2021年12月发射后,工程师将天文台的红外光谱仪指向它进行测试。这些仪器可以探测行星周围气体吸收星光红外波长时的化学指纹。Bello-Arufe和同事随后决定进行更深入地挖掘,以确认这颗行星是否有大气层。在最近的观测之前,天文学家已经无数次改变对55Cancrie的看法。这颗行星于2004年被发现。起初,研究人员认为它可能是一个类似木星的气态巨星的核心。但在2011年,斯皮策太空望远镜在这颗行星从其恒星前方经过时对其进行了观测发现,55Cancrie实际上比一颗气态巨星小得多,密度也大得多,是一颗岩石超级地球。几年后,研究人员注意到,对于一颗离其恒星如此之近的行星来说,55Cancrie的温度比它应有的温度低,这表明它可能有大气层。一种假设是,这颗行星是一个被超临界水分子包围的“水世界”;另一种假设是,它被一个主要由氢和氦组成的膨胀的原始大气所包围。但这些想法最终都被推翻了。韦伯望远镜的近红外相机(NIRCam)和中红外探测器(MIRI)分别于2022年11月和2023年3月捕捉到的热辐射光谱显示了超地外行星55Cancrie发出的不同波长红外光(x轴)的亮度(y轴)。该图将NIRCam(橙色点)和MIRI(紫色点)收集到的数据与两种不同的模型进行了比较。模型A(红色)显示了如果巨蟹座55的大气层是由气化岩石构成的,那么它的发射光谱应该是什么样的。模型B(蓝色)显示的是如果这颗行星的大气层是由岩浆海洋排出的富含挥发性物质的大气层,而岩浆海洋的挥发性物质含量与地球地幔相似,那么它的发射光谱应该是什么样的。MIRI和NIRCam的数据与富含挥发性物质的模型一致。这颗行星发射的中红外光量(中红外成像仪)表明,它的日侧温度明显低于没有大气层将热量从日侧传到夜侧时的温度。4到5微米之间光谱的衰减(NIRCam数据)可以解释为大气中的一氧化碳或二氧化碳分子对这些波长的吸收。资料来源:NASA、ESA、CSA、JosephOlmsted(STScI)、RenyuHu(NASA-JPL)、AaronBello-Arufe(NASA-JPL)、MichaelZhang(芝加哥大学)、MantasZilinskas(SRON)JPL的行星科学家、论文合著者胡仁宇(音)说,一颗离恒星如此之近的行星会受到恒星风的轰击,很难抓住大气层中的挥发性分子。这存在两种可能性,首先,这颗行星是完全干燥的,有一层由蒸发岩石组成的超薄大气层;其次,它有一个由较重的挥发性分子组成的厚厚的大气层,这些分子不容易流失。最新数据表明,55Cancrie的大气中含有碳基气体,这指向了第二种可能。Seager说,该团队收集了大气层的真实证据,但还需要进行更多观测来确定其完整成分、存在气体的相对数量及其精确厚度。美国斯坦福大学的行星地质学家LauraSchaefer有兴趣了解55Cancrie的大气层如何与行星表面下的物质相互作用。他说,大气仍有可能被恒星风侵蚀,但岩浆海洋中岩石的融化和释放可能会补充气体。“地球可能至少经历了一个岩浆-海洋阶段,也许是几个。”Schaefer说,“拥有岩浆海洋的实际例子可以帮助我们了解太阳系的早期历史。”相关论文信息:https://doi.org/10.1038/s41586-024-07432-x...PC版:https://www.cnbeta.com.tw/articles/soft/1432349.htm手机版:https://m.cnbeta.com.tw/view/1432349.htm

封面图片

韦伯太空望远镜正在积极探索小型的、可能适合居住的系外行星

韦伯太空望远镜正在积极探索小型的、可能适合居住的系外行星系外行星在我们的银河系中很常见,有些甚至在恒星的所谓宜居带中运行。美国国家航空航天局(NASA)的詹姆斯-韦伯太空望远镜(JamesWebbSpaceTelescope)一直忙于观测其中几颗可能适宜居住的小行星,天文学家们现在正在努力分析韦伯的数据。美国国家航空航天局戈达德太空飞行中心的两位韦伯项目科学家克尼科尔-科隆(KnicoleColón)博士和克里斯托弗-斯塔克(ChristopherStark)博士在这里为我们详细介绍研究这些其他世界所面临的挑战:定义潜在宜居行星"潜在宜居行星通常被定义为大小与地球相近、运行在恒星'宜居带'内的行星。我们目前知道大约有30颗行星可能是像地球一样的小型岩石行星,它们的轨道位于宜居带。然而,并不能保证在宜居带中运行的行星确实是宜居的(它可以支持生命),更不用说有人居住了(它目前支持生命)。在撰写本文时,已知的宜居和有人居住的行星只有一个--地球!"这张信息图比较了银河系中三类恒星的特征:类似太阳的恒星被归类为G星;质量比太阳小、温度比太阳低的恒星是K矮星;而更暗、温度更低的恒星是偏红色的M矮星。每一类恒星的宜居带大小都不同。在太阳系中,宜居带从金星轨道外开始,几乎包括火星。资料来源:NASA、ESA和Z.Levy(STScI)观测系外行星大气层的挑战韦伯望远镜正在观测的潜在宜居世界都是凌日系外行星,这意味着它们的轨道几乎是边缘朝上的,因此它们会从宿主恒星的前方穿过。当行星从恒星前方经过时,韦伯就会利用这个方位进行透射光谱分析。通过这个方位,我们可以检查行星大气过滤后的星光,从而了解它们的化学成分。然而,小型岩质行星稀薄的大气层阻挡的星光量非常小,通常远小于0.02%。仅仅探测这些小星球周围的大气层就非常具有挑战性。识别水蒸气的存在则更加困难,而水蒸气的存在可能会增加宜居的可能性。寻找生物特征(生物产生的气体)异常困难,但也是一项令人兴奋的工作。当系外行星直接从其宿主恒星和观测者之间穿过时,我们说这颗行星正在其宿主恒星前凌日。这次凌日会使恒星的光线变暗一定程度,如果系外行星有大气层的话,星光也会被大气层过滤掉。该动画展示了一颗行星以及在凌日过程中光照度的相应变化。资料来源:美国宇航局喷气推进实验室目前只有少数几个可能适合居住的小世界被认为可以通过韦伯天体进行大气表征,其中包括LHS1140b和TRAPPIST-1e行星。检测生物特征的技术挑战最近的一些理论工作探索了超地球大小的行星LHS1140b大气层中气态分子的可探测性,凸显了在搜索生物特征方面的一些挑战。这项工作指出,在大气层清晰、无云的最佳情况下,该行星需要绕其主恒星运行大约10-50次,相当于韦伯望远镜40-200小时的观测时间,才能探测到潜在的生物特征,如氨、磷化氢、氯甲烷和氧化亚氮。类地行星大气层的模拟透射光谱显示了臭氧(O3)、水(H2O)、二氧化碳(CO2)和甲烷(CH4)等分子吸收的太阳光波长。(请注意,在这张图上,Y轴显示的是被类地行星大气层遮挡的光量,而不是穿过大气层的阳光亮度:亮度从下往上递减)。来自LisaKaltenegger和ZifanLin2021ApJL909的模型透射光谱。资料来源:NASA、ESA、LeahHustak(STScI)系外行星观测时间表的复杂性如果行星的大气层是多云的,那么寻找生物特征可能需要比50次凌日观测更多的时间。众所周知,大多数小型系外行星都有云层或雾霾,这些云层或雾霾会减弱或掩盖正在搜索的信号。这些生物特征气体的大气信号也往往与其他预期的大气信号(如气态甲烷或二氧化碳)重叠,因此区分各种信号是另一项挑战。海洋行星:研究的新途径寻找生物特征的一个潜在途径是研究大洋行星,大洋行星是理论上的一类超地球大小的行星,具有相对稀薄的富氢大气层和大量的液态水海洋。根据韦伯天文台和其他天文台目前提供的数据,超级地球K2-18b是潜在宜居大洋行星的候选者。最近发表的工作利用近红外探测器和近红外ISS探测到了K2-18b大气中的甲烷和二氧化碳,但没有探测到水。这意味着K2-18b是一个拥有液态水海洋的海洋世界的说法仍然是基于理论模型,还没有直接的观测证据。这项工作的作者还暗示,K2-18b的大气中可能存在潜在的生物特征二甲基硫醚,但潜在的二甲基硫醚信号太弱,目前的数据还无法对其进行确凿的探测。艺术家构想的詹姆斯-韦伯太空望远镜。图片来源:NASAGSFC/CIL/AdrianaManriqueGutierrez海洋类行星的概念和研究都是非常新的,因此对液态水海洋情景(从而对宜居环境的潜力)的其他解释仍在探索之中。即将使用近红外天文望远镜和近红外成像仪进行的韦伯观测,将进一步揭示潜在的大洋行星K2-18b的性质,以及其大气层中可能存在的二甲基硫化物。因此,我们还面临着一个新的挑战,那就是确定韦伯探测到的水蒸气是否真的来自行星的大气层,而不是其恒星。结论:系外行星研究的未来探测绕冷恒星运行的小型、可能适合居住的凌日行星大气中的生物特征是一项极具挑战性的工作,通常需要理想的条件(如无云大气)或假设早期地球环境(即与我们所知的现代地球不同),探测到的信号明显小于百万分之200,恒星运行良好,星斑中没有大量水蒸气,以及大量的望远镜时间才能达到足够的信噪比。同样重要的是要记住,以任何方式探测到单一生物特征都不构成发现生命。要在系外行星上发现生命,可能需要一大批明确检测到的生物特征、来自多个飞行任务和观测站的数据,以及广泛的大气建模工作,这一过程可能需要数年时间。韦伯的强大之处在于,它能够灵敏地探测到少数最有希望围绕冷恒星运行的潜在宜居行星的大气层,并开始确定其特征。韦伯特别有能力探测一系列对生命非常重要的分子,如水蒸气、甲烷和二氧化碳。我们的目标是尽可能多地了解可能适宜居住的世界,即使我们无法通过韦伯望远镜明确确定适宜居住的特征。韦伯观测结果与美国宇航局即将发射的南希-格雷斯-罗曼太空望远镜的系外行星研究相结合,最终将为未来的宜居世界天文台奠定基础,该天文台将是美国宇航局首个专门用于直接成像和搜寻类太阳恒星周围类地行星上生命造成的化学痕迹的任务"。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1434174.htm手机版:https://m.cnbeta.com.tw/view/1434174.htm

封面图片

韦伯望远镜探测到附近系外行星WASP-107b的水蒸气、二氧化硫和沙云

韦伯望远镜探测到附近系外行星WASP-107b的水蒸气、二氧化硫和沙云艺术家印象中的WASP-107b及其母恒星。图片来源:插图:比利时LUCA艺术学院/KlaasVerpoest(视觉),JohanVanLooveren(排版)。AchrèneDyrek(法国原子能委员会和巴黎城市大学)、MichielMin(荷兰SRON)、LeenDecin(比利时鲁汶大学)/欧洲MIRIEXOGTO小组/欧空局/美国国家航空航天局(NASA)全世界的天文学家正在利用詹姆斯-韦伯太空望远镜(JWST)上搭载的中红外仪器(MIRI)的先进功能,对系外行星--围绕太阳以外的恒星运行的行星--进行突破性的观测。鲁汶大学天文学研究所的研究人员共同领导的欧洲天文学家小组观测到了这颗独特的气态系外行星WASP-107b。这颗行星的质量与海王星相似,但体积却比海王星大得多,几乎接近木星的大小。与太阳系内的气态巨行星相比,WASP-107b的这一特点使其显得相当"蓬松"。与木星等太阳系巨行星的探测深度相比,这颗系外行星的蓬松度使天文学家能够深入其大气层大约50倍。WASP-107b是一颗独特的气态系外行星,它围绕着一颗比太阳温度稍低、质量稍小的恒星运行。深入的大气分析欧洲天文学家小组充分利用了这颗系外行星非凡的蓬松度,使他们能够深入观察它的大气层。这个机会为揭开其大气层复杂的化学成分打开了一扇窗。这背后的原因非常简单:在密度较低的大气层中,信号或光谱特征要比在密度较高的大气层中突出得多。他们最近在《自然》杂志上发表的研究报告揭示了水蒸气、二氧化硫(SO2)和硅酸盐云的存在,但值得注意的是,没有发现温室气体甲烷(CH4)的踪迹。这些探测结果为了解这颗迷人系外行星的动力学和化学性质提供了重要信息。首先,甲烷的缺失暗示着这颗行星内部可能是温暖的,这为我们了解热能在行星大气中的流动提供了一个诱人的窗口。其次,二氧化硫(因有火柴烧焦的气味而闻名)的发现也是一大惊喜。以前的模型曾预测不存在二氧化硫,但WASP-107b大气层的新型气候模型现在表明,WASP-107b的蓬松度本身就能在其大气层中形成二氧化硫。尽管它的宿主恒星由于温度较低而发射出的高能光子相对较少,但由于其蓬松的特性,这些光子可以深入到行星的大气层中。这使得产生二氧化硫所需的化学反应得以发生。由JWST上的中红外仪器(MIRI)的低分辨率光谱仪(LRS)捕捉到的暖海王星系外行星WASP-107b的透射光谱显示了该行星大气层中存在水蒸气、二氧化硫和硅酸盐(沙)云的证据。资料来源:MichielMin/EuropeanMIRIEXOGTOteam/ESA/NASA云的组成和动力学但这并不是他们观测到的全部。与无云的情况相比,二氧化硫和水蒸气的光谱特征都明显减弱。高空云层部分遮挡了大气中的水蒸气和二氧化硫。虽然其他系外行星上也有云层的推断,但这是天文学家第一次能够明确确定这些云层的化学成分。在这种情况下,云层由小硅酸盐颗粒组成,这是一种人类熟悉的物质,在世界许多地方都能找到,是沙子的主要成分。"JWST正在彻底改变系外行星的特征描述,以惊人的速度提供前所未有的洞察力,"领衔作者、鲁汶大学的LeenDecin教授说。"JWST的近红外成像仪在这颗蓬松的系外行星上发现了沙子、水和二氧化硫云,这是一个关键的里程碑。它重塑了我们对行星形成和演化的理解,为我们自己的太阳系带来了新的曙光"。欧洲天文学家小组深入观察WASP-107b的蓬松大气层,不仅发现了水蒸气和二氧化硫,甚至还发现了硅酸盐沙云。图片来源:插图:比利时LUCA艺术学院/KlaasVerpoest(视觉),JohanVanLooveren(排版)。科学:AchrèneDyrek(法国原子能委员会和巴黎城市大学)、MichielMin(荷兰SRON)、LeenDecin(比利时鲁汶大学)/欧洲MIRIEXOGTO小组/欧空局/美国宇航局温度和云的形成在地球大气中,水在低温下会凝结成冰,而在温度达到1000摄氏度(约1800华氏度)左右的气态行星中,硅酸盐颗粒会凝结成云。然而,WASP-107b的外层大气温度约为500摄氏度(约900华氏度),根据传统模型的预测,这些硅酸盐云应该是在大气深处形成的,那里的温度要高得多。此外,大气深处的沙云会下雨。那么,这些沙云怎么可能存在于高空并持续存在呢?领衔作者米希尔-闵(MichielMin)博士说:"我们在高空看到这些沙云的事实肯定意味着,沙雨水滴在更深的高温层中蒸发,产生的硅酸盐蒸汽被有效地移回高空,在那里重新凝结,再次形成硅酸盐云。这与我们地球上的水蒸气和云的循环非常相似,但水滴是由沙子构成的"。WASP-107b的大气中之所以会持续存在沙云,就是因为这种通过垂直传输不断升华和凝结的循环。詹姆斯-韦伯太空望远镜旨在研究系外行星的大气层,从而确定这些行星是否适合居住或是否含有生物特征。资料来源:诺斯罗普-格鲁曼公司系外行星研究的进展这项开创性的研究不仅揭示了WASP-107b的奇异世界,还推动了我们对系外行星大气的认识。它标志着系外行星探索的一个重要里程碑,揭示了这些遥远世界上化学物质和气候条件之间错综复杂的相互作用。"JWST使我们能够对太阳系中没有任何对应的系外行星进行深入的大气表征,我们正在揭开新世界的面纱!"主要作者、巴黎CEA的AchrèneDyrek博士说。近红外成像仪的设计与开发得益于比利时联邦科学政策办公室BELSPO通过欧空局PRODEX计划提供的资金,比利时工程师和科学家在MIRI仪器的设计和开发过程中发挥了关键作用,其中包括列日空间中心(CSL)、泰雷兹阿莱尼亚航天公司(沙勒罗瓦)和OIP传感器系统公司(欧德纳德)。在鲁汶工程大学天文学研究所,仪器科学家在英国实验室、美国宇航局戈达德中心和美国宇航局约翰逊航天中心模拟太空环境的特殊测试舱中对MIRI仪器进行了广泛测试。与欧洲和美国的同事们一起,我们已经建造和测试了近20年的MIRI仪器。仪器专家、鲁汶大学的BartVandenbussche博士说:"看到我们的仪器揭开这颗引人入胜的系外行星大气层的面纱,我们感到非常有成就感。"德国马克斯-普朗克天文研究所的JeroenBouwman博士说:"这项研究综合了对JWST观测数据进行的多项独立分析的结果,不仅体现了我们多年来在MIRI仪器制造方面的投入,也体现了我们多年来在MIRI观测数据的校准和分析工具方面的投入。"...PC版:https://www.cnbeta.com.tw/articles/soft/1397255.htm手机版:https://m.cnbeta.com.tw/view/1397255.htm

封面图片

韦伯太空望远镜探测到系外行星 K2-18b 上的关键分子

韦伯太空望远镜探测到系外行星K2-18b上的关键分子这幅艺术家的概念图展示了根据科学数据绘制的系外行星K2-18b的样子。K2-18b是一颗系外行星,质量是地球的8.6倍,它围绕着位于宜居带的冷矮星K2-18运行,距离地球120光年。美国国家航空航天局的詹姆斯-韦伯太空望远镜对K2-18b进行了一项新的调查,发现了包括甲烷和二氧化碳在内的含碳分子的存在。甲烷和二氧化碳的大量存在以及氨的缺乏支持了这样一种假设,即在K2-18b的富氢大气层下可能存在一个水海洋。美国国家航空航天局哈勃太空望远镜的观测首次揭示了这颗宜居带系外行星的大气特性,随后的进一步研究改变了我们对该系统的认识。K2-18b围绕着位于宜居带的冷矮星K2-18运行,距离地球120光年,位于狮子座。K2-18b等系外行星的大小介于地球和海王星之间,与太阳系中的任何行星都不同。由于附近没有类似的行星,因此人们对这些"亚海王星"的了解甚少,天文学家们对其大气层的性质也争论不休。亚海王星K2-18b可能是一颗水洋系外行星的说法令人好奇,因为一些天文学家认为,这些世界是寻找系外行星生命证据的理想环境。用韦伯的近红外成像仪和无缝摄谱仪(NIRISS)以及近红外摄谱仪(NIRSpec)获得的K2-18b的光谱显示,这颗系外行星的大气层中含有大量甲烷和二氧化碳,还可能探测到一种叫做二甲基硫醚(DMS)的分子。K2-18b的质量是地球的8.6倍,围绕位于宜居带的冷矮星K2-18运行,距离地球120光年。资料来源:NASA、ESA、CSA、RalfCrawford(STScI)、JosephOlmsted(STScI)、NikkuMadhusudhan(IoA)剑桥大学天文学家、公布这些结果的论文的第一作者尼库-马德胡苏丹解释说:"我们的发现强调了在寻找其他地方的生命时考虑各种宜居环境的重要性。传统上,在系外行星上寻找生命的工作主要集中在较小的岩石行星上,但较大的海王星世界明显更有利于大气观测"。甲烷和二氧化碳含量丰富,而氨含量不足,这支持了在K2-18b的富氢大气层下可能存在水海洋的假设。在地球上,只有生命才会产生这种物质。地球大气中的大部分DMS是由海洋环境中的浮游植物释放的。DMS的推断不太可靠,需要进一步验证。"即将进行的韦伯观测应该能够证实K2-18b的大气中是否确实存在大量的DMS,"Madhusudhan解释说。虽然K2-18b位于宜居带,而且现在已知它蕴藏着含碳分子,但这并不一定意味着这颗行星能够孕育生命。这颗行星的体积很大,半径是地球半径的2.6倍,这意味着行星内部很可能含有大量的高压冰幔,就像海王星一样,但是富氢大气层和海洋表面较薄。据预测,海洋世界将拥有水的海洋。不过,也有可能海洋温度过高,不适合居住,或者是液态的。卡迪夫大学的苏巴吉特-萨卡尔(SubhajitSarkar)解释说:"虽然太阳系中不存在这种行星,但亚海王星是迄今为止银河系中最常见的行星类型。我们获得了宜居带亚海王星迄今为止最详细的光谱,这使我们能够计算出其大气层中存在的分子"。描述像K2-18b这样的系外行星的大气层--即确定其气体和物理条件--是天文学中一个非常活跃的领域。然而,这些行星在体积大得多的母恒星的耀眼光芒下显得黯然失色,这使得探索系外行星大气层变得尤为具有挑战性。研究小组通过分析K2-18b母恒星穿过系外行星大气层时发出的光线,避开了这一挑战。K2-18b是一颗凌日系外行星,这意味着当它穿过母恒星表面时,我们可以探测到亮度的下降。2015年,NASA的K2任务就是这样首次发现这颗系外行星的。这意味着在凌日过程中,极小一部分星光会穿过系外行星的大气层,然后到达韦伯望远镜这样的望远镜。星光穿过系外行星大气层时会留下痕迹,天文学家可以将这些痕迹拼凑起来,从而确定系外行星大气层中的气体。詹姆斯-韦伯的能力和未来研究"这一结果之所以能够实现,是因为韦伯望远镜的波长范围扩大,灵敏度空前,只需两次凌日就能对光谱特征进行强有力的探测,"马德胡苏丹说。"相比之下,用韦伯望远镜进行的一次凌日观测与用哈勃望远镜在相对较窄的波长范围内进行的八次观测(历时数年)的精度相当。剑桥大学的SavvasConstantinou解释说:"这些结果仅仅是对K2-18b进行两次观测的结果,还有更多的观测结果正在进行中。这意味着我们在这里的工作只是韦伯能观测到的宜居带系外行星的早期展示。"研究小组的研究成果已被接受发表在《天体物理学杂志通讯》上。研究小组现在打算利用望远镜的中红外光谱仪(MIRI)进行后续研究,他们希望这将进一步验证他们的发现,并为K2-18b的环境条件提供新的见解。"我们的最终目标是在宜居系外行星上发现生命,这将改变我们对我们在宇宙中的位置的认识,"马德胡苏丹总结道。"在这一探索过程中,我们的发现是朝着更深入地了解水星世界迈出的充满希望的一步。"美国国家航空航天局的詹姆斯-韦伯太空望远镜是世界上最重要的太空科学观测站。它正在揭开太阳系的神秘面纱,眺望其他恒星周围的遥远世界,探索宇宙的神秘结构和起源以及我们在宇宙中的位置。韦伯望远镜是一项国际计划,由美国国家航空航天局(NASA)领导,其合作伙伴包括欧洲航天局(ESA)和加拿大航天局(CanadianSpaceAgency)。...PC版:https://www.cnbeta.com.tw/articles/soft/1383333.htm手机版:https://m.cnbeta.com.tw/view/1383333.htm

封面图片

韦伯太空望远镜揭示塑造行星系统的无形力量

韦伯太空望远镜揭示塑造行星系统的无形力量詹姆斯-韦伯太空望远镜的NIRCam仪器看到的猎户座星云内部区域。资料来源:NASA、ESA、CSA、数据缩减和分析:PDRs4AllERS小组;图形处理S.Fuenmayor通过观测一个名为d203-506的原行星盘,他们发现了大质量恒星在形成不到一百万年的行星系统过程中所起的关键作用。这项研究由图卢兹国家科学研究中心(CNRS)的奥利维尔-贝内(OlivierBerné)博士领导,以《在原行星盘中观测到的远紫外光驱动的光蒸发流》为题发表在《科学》杂志上。这些恒星的质量大约是太阳的十倍,更重要的是,它们的光亮度是太阳的十万倍,在这些系统附近形成的任何行星都会受到非常强烈的紫外线辐射。根据行星系中心恒星的质量,这种辐射既可以帮助行星的形成,也可以通过分散行星的物质来阻止它们的形成。在猎户座星云中,科学家们发现,由于大质量恒星的强烈辐照,类似木星的行星将无法在行星系d203-506中形成。该团队由来自仪器、数据缩减和建模等领域的众多专家组成。JWST的数据与阿塔卡马大型毫米波阵列(ALMA)收集的数据相结合,以确定气体中的物理条件。计算得出的星盘质量损失速度意味着,整个星盘的蒸发速度将快于一颗巨行星的形成速度。科隆大学天体物理研究所的YokoOkada博士说:"团队多年来做出了许多贡献,包括制定观测计划和评估数据,这些成果的取得令人欣喜,标志着我们在了解行星系统的形成方面迈出了重要一步。"猎户座星云中的JWST数据非常丰富,让科学家们忙于在恒星和行星形成以及星际介质演化领域进行各种详细分析。编译自:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1422706.htm手机版:https://m.cnbeta.com.tw/view/1422706.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人