詹姆斯·韦伯太空望远镜回顾早期宇宙 看到了像我们银河系一样的星系

詹姆斯·韦伯太空望远镜回顾早期宇宙看到了像我们银河系一样的星系这个模拟显示了恒星条如何形成(左)和恒星条驱动的气体流入(右)。恒星条在星系演化中发挥着重要作用,它将气体输送到星系的中心区域,在那里迅速转化为新的恒星,其速度通常是星系其他区域的10到100倍。条带也通过引导部分气体间接地帮助星系中心的超大质量黑洞成长。资料来源:FrancoiseCombes,巴黎天文台在詹姆斯·韦伯太空望远镜升空之前,哈勃太空望远镜的图像从未在如此年轻的时代检测到条形星系。在哈勃图像中,一个名为EGS-23205的星系只不过是一个圆盘状的污点,但在去年夏天拍摄的相应的JWST图像中,它是一个美丽的螺旋星系,有一个清晰的恒星条。德克萨斯大学奥斯汀分校的天文学教授ShardhaJogee说:"在哈勃数据中几乎看不到的条状物在JWST图像中突然出现,显示了JWST的巨大力量,可以看到星系的基本结构。"她描述了来自宇宙演化早期释放科学调查(CEERS)的数据,由UTAustin教授StevenFinkelstein领导。JWST以高分辨率和比哈勃更长的红外波长绘制星系图的能力使它能够透过尘埃,揭示出遥远星系的基本结构和质量。这可以从EGS23205星系的这两张图片中看出,它在大约110亿年前的样子。在HST的图像中(左图,用近红外滤镜拍摄),该星系只不过是一个被灰尘遮挡的盘状污点,并受到年轻恒星的强光影响,但在相应的JWST中红外图像中(在去年夏天拍摄),它是一个美丽的螺旋星系,有着清晰的恒星条。资料来源:NASA/CEERS/德克萨斯大学奥斯汀分校该研究小组发现了另一个有条带的星系,EGS-24268,也来自大约110亿年前,这使得两个有条带的星系的存在时间比以前发现的任何星系都要远。在一篇被接受发表在《天体物理学杂志通讯》上的文章中,他们强调了这两个星系,并展示了80多亿年前的其他四个条带星系的例子。领导分析的研究生Yuchen"Kay"Guo说:"对于这项研究,我们正在研究一个新的体系,以前没有人使用这种数据或做这种定量分析,所以一切都很新。这就像进入了一个从未有人进入过的森林。""条带解决了星系的供应问题,"Jogee说。"就像我们需要把原材料从港口运到制造新产品的内陆工厂一样,条状物有力地把气体输送到中心区域,在那里气体被迅速转化为新的恒星,其速度通常比星系其他地方快10到100倍。"在这样的早期时代发现条带,从几个方面动摇了星系的演化方案。Jogee说:"这次发现的早期条带意味着星系演化模型现在有了一条新的途径,通过条带来加速早期新星的产生。"而这些早期星条的存在对理论模型提出了挑战,因为它们需要得到正确的星系物理学,以预测正确的星条丰度。该小组将在他们的下一篇论文中测试不同的模型。JWST图像的蒙太奇,显示了六个条形星系的例子,其中两个代表了迄今为止定量识别和定性的最高回视时间。每张图左上方的标签显示了每个星系的回望时间,从84亿年前到110亿年前(Gyr)不等,当时宇宙的年龄只有现在的40%到20%。资料来源:NASA/CEERS/德州大学奥斯汀分校JWST能够比哈勃更好地揭开遥远星系的结构,原因有二。首先,它更大的镜子赋予它更多的集光能力,使它能够看得更远,分辨率更高。其次,它可以更好地看穿尘埃,因为它观察的红外波长比哈勃更长。本科生EdenWise和ZileiChen在研究中发挥了关键作用,他们目测了数百个星系,寻找那些看起来有条带的星系,这有助于将名单缩小到几十个,供其他研究人员用更深入的数学方法进行分析。...PC版:https://www.cnbeta.com.tw/articles/soft/1338231.htm手机版:https://m.cnbeta.com.tw/view/1338231.htm

相关推荐

封面图片

詹姆斯·韦伯在110亿光年外看到了更早的类银河系星系

詹姆斯·韦伯在110亿光年外看到了更早的类银河系星系"条带解决了星系的供应链问题,"该研究的作者ShardhaJogee说。"就像我们需要把原材料从港口运到制造新产品的内陆工厂一样,这种结构有力地把气体运到中心区域,在那里气体被迅速转化为新的恒星,其速度通常比银河系其他地方快10到100倍。"人们普遍认为,这些条带出现在螺旋星系演化的某个阶段,因为它们达到了一种"成熟"状态。研究发现,观察的时间越久,有条纹的星系的比例就越低,人们认为在某一时刻之前,宇宙中不应该有任何有条带的星系,因为还没有足够的时间让它们发展。哈勃(左)和詹姆斯-韦伯(右)看到的110亿光年外的一个名为EGS23205的星系。在后者中,该星系的条带清晰可见NASA/CEERS/德克萨斯大学奥斯汀分校但是现在,詹姆斯-韦伯太空望远镜已经动摇了这个假设。由于其大型主镜,该天文台被设计为比之前的任何天文台看得更远,而其红外仪器使其能够透过遮蔽哈勃等可见光望远镜的尘埃。在这项新的研究中,韦伯检查了一系列以前由哈勃观测的遥远星系,观察它是否能够探测到它们结构中的新细节。果然,在其中的几个星系中可以清楚地看到条带,而这些条状物以前看起来只是像圆形的污点。Jogee说:"我看了一眼这些数据,然后我说,'我们要放弃其他一切!'。在哈勃数据中几乎看不到的条纹在JWST的图像中突然出现,显示了JWST在看到星系的基本结构方面的巨大力量。"关键是什么?这些星系在80亿到110亿光年之外,这意味着它们比想象中更早地发展到了那个高级阶段。这可能会改变我们对一般星系演变的理解。詹姆斯-韦伯的遥远星系图像的蒙太奇,在它们的中心有清晰的条纹。Gyr=十亿光年,表明这些星系有多远NASA/CEERS/德克萨斯大学奥斯汀分校在未来的论文中,该团队计划测试不同的星系演化模型,以找到与新的观测结果的最佳匹配。这项研究将发表在《天体物理学杂志通讯》上。...PC版:https://www.cnbeta.com.tw/articles/soft/1337871.htm手机版:https://m.cnbeta.com.tw/view/1337871.htm

封面图片

詹姆斯·韦伯太空望远镜首次揭示出在早期星系附近隐藏的伴星系

詹姆斯·韦伯太空望远镜首次揭示出在早期星系附近隐藏的伴星系研究人员能够确定,这两个星系与地球的距离大致相同,并且处于同一邻域,这表明它们可能会相互作用并可能合并。这些星系的成熟金属性使科学家们推测,恒星的形成一定是非常有效的,并且在宇宙中很早就开始了。在扫描美国宇航局詹姆斯-韦伯太空望远镜(JWST)拍摄的一个著名的早期星系的首批图像时,康奈尔大学的天文学家们很感兴趣地看到了靠近其外缘的一个光团。他们最初的关注点以及红外观测站的目标是SPT0418-47,这是早期宇宙中最明亮的尘埃、恒星形成的星系之一,其远处的光线被一个前景星系的引力弯曲并放大成一个圆,称为爱因斯坦环。但是,对去年秋天发布的早期JWST数据的深入研究产生了一个偶然的发现:一个以前隐藏在前景星系光线后面的伴生星系,尽管它的年龄很小,估计为14亿年,但令人惊讶的是,它似乎已经承载了多代恒星。詹姆斯-韦伯太空望远镜的艺术画。来源:美国国家航空航天局康奈尔大学天体物理学和行星科学中心(CCAPS)的副研究员、论文第二作者AmitVishwas博士说,智利阿塔卡马大型毫米/亚毫米阵列(ALMA)拍摄的同一爱因斯坦环的早期图像含有被JSWT清晰解析的伴星的暗示,但它们不能被解释为除了随机噪音以外的东西。通过调查JWST的NIRSpec仪器所拍摄的图像中每个像素的光谱数据,研究人员Peng发现了环内的第二个新光源。他确定这两个新的光源是一个新星系的图像,它被负责创造环的同一个前景星系所引力,尽管它们的亮度要低8到16倍--这证明了JWST红外视觉的强大。对光的化学成分的进一步分析证实,来自氢、氮和硫原子的强发射线显示了类似的红移--这是衡量一个星系的光在越来越远的情况下延伸到更长、更红的波长的一个标准。这使得这两个星系与地球的距离大致相同--计算出的红移约为4.2,或约为宇宙年龄的10%--并且处于同一附近。为了验证他们的发现,研究人员回到了早期的ALMA观测。他们发现一条电离碳的发射线与JWST观测到的红移密切相关。Vishwas说:"我们有几条发射线的移位完全相同,所以毫无疑问,这个新星系就是我们认为的地方。"研究小组估计,这个被他们命名为SPT0418-SE的伴生星系在环的50千秒差距(Parszek)以内(秒差距是一个宇宙距离尺度,用以测量太阳系以外天体的长度单位。1秒差距约为3.26光年、206,000天文单位或31兆公里),这种级别的接近表明,这些星系必然会相互影响,甚至可能合并,这种观察增加了人们对早期星系如何演变为更大星系的理解。作为早期宇宙中的星系,这两个星系的质量并不高,其中"SE"相对较小,尘埃较少,这使得它看起来比极度被尘埃遮挡的环更蓝。根据附近具有类似颜色的星系的图像,研究人员认为它们可能居住在"一个具有尚未被发现的邻居的大规模暗物质晕中"。考虑到这些星系的年龄和质量,最令人惊讶的是它们的成熟金属性--比氦和氢更重的元素的数量,如碳、氧和氮--该小组估计与我们的太阳相似。与太阳相比,它大约有40亿年的历史,并且从前几代恒星那里继承了大部分金属,这些恒星大约有80亿年的时间来建立它们,我们是在宇宙不到15亿年的时候观察这些星系。研究人员已经提交了一份关于JWST观测时间的提案,以继续研究该星环及其伴星,并调和光学和远红外光谱之间观察到的潜在差异。...PC版:https://www.cnbeta.com.tw/articles/soft/1355239.htm手机版:https://m.cnbeta.com.tw/view/1355239.htm

封面图片

NASA韦伯太空望远镜揭示了银河系进化和黑洞的情况

NASA韦伯太空望远镜揭示了银河系进化和黑洞的情况NASA的詹姆斯-韦伯太空望远镜(JWST)在一张巨大的新图像中揭示了被称为“斯蒂芬五重奏”的星系群的前所未有的细节。这个星系群的距离很近,给了科学家们一个观察星系合并和相互作用的旁观席位。天文学家们很少能如此详细地看到相互作用的星系是如何在彼此之间引发恒星形成的及这些星系中的气体是如何被扰动的。“斯蒂芬五重奏”是研究这些对所有星系都至关重要的过程的一个奇妙“实验室”。在一个前所未有的细节方面,该图像还显示了由该星系群中的一个超大质量黑洞驱动的外流。像这样紧密的星系群在早期宇宙中可能更常见,当时过热的下坠物质可能为非常有能量的黑洞提供了燃料。NASA的韦伯揭示了银河系的演变和黑洞的情况因在经典圣诞电影《生活多美好》中的突出表现而闻名的斯蒂芬五重奏是一个由五个星系组成的惊人视觉组合。现在,NASA的JWST以一种全新的方式揭示了斯蒂芬五重奏。这个巨大的马赛克是韦伯迄今为止最大的图像,其覆盖了约1/5的月球直径。它由近1000个独立的图像文件构成,包含超过1.5亿个像素。来自韦伯的信息为了解星系的相互作用如何在早期宇宙中推动星系演化提供了新的见解。由于其强大的红外视觉和极高的空间分辨率,韦伯显示了这个星系群中从未见过的细节。由数百万颗年轻恒星组成的闪闪发光的星团和新诞生恒星的星爆区在图像中熠熠生辉。由于引力的相互作用,气体、尘埃和恒星的扫尾正从几个星系中被拉出。最引人注目的是,韦伯太空望远镜捕捉到了巨大的冲击波,因为其中一个星系--NGC7318B击穿了这个星系团。斯蒂芬五重奏的五个星系加在一起,也被称为希克森紧凑型第92组(HCG92)。虽然被称为“五重奏”,但其中只有四个星系实际是紧紧靠在一起的并被卷入了宇宙的舞蹈中。第五个也就是最左边的星系被称为NGC7320,跟其他四个星系相比,它的位置很靠前。事实上,NGC7320距离地球只有4000万光年,而其他四个星系(NGC7317、NGC7318A、NGC7318B和NGC7319)约在2.9亿光年之外。跟数十亿光年外的更遥远的星系相比,这在宇宙中仍是相当接近的。研究像这些相对较近的星系有助于天文学家更好地理解在更遥远的宇宙中看到的结构。这种接近性为科学家们提供了一个见证星系合并和相互作用的旁观席位,这对所有的星系演化都是至关重要的。天文学家很少能如此详细地见证相互作用的星系是如何在彼此之间引发恒星形成以及这些星系中的气体是如何被扰动的。斯蒂芬五重奏是研究这些对所有星系都至关重要的过程的优秀“实验室”。像这样紧密的星系群在早期宇宙中可能更常见,当时它们的过热、下坠物质可能为称为类星体的高能黑洞提供了燃料。即使在今天,这个星系群中最顶端的星系--NGC7319--也藏有一个活跃的星系核,一个质量约为太阳2400万倍的超大质量黑洞。它正在积极地吸纳物质并放出相当于400亿个太阳的光能。韦伯用近红外光谱仪(NIRSpec)和中红外仪器(MIRI)对活动星系核进行了非常详细的...PC版:https://www.cnbeta.com/articles/soft/1307113.htm手机版:https://m.cnbeta.com/view/1307113.htm

封面图片

哈勃太空望远镜展示银河系的邻居:英仙座LEDA 48062星系

哈勃太空望远镜展示银河系的邻居:英仙座LEDA48062星系哈勃太空望远镜拍摄的英仙座LEDA48062星系的图像。资料来源:欧空局/哈勃和美国国家航空航天局,R.Tully你有没有想过,为什么哈勃图像中的恒星会被四个尖锐的点所包围?这些光芒被称为衍射尖峰,是当星光在像哈勃这样的反射式望远镜内的支撑结构上发生衍射--或扩散时产生的。这四个尖峰是由于支持哈勃副镜的四个薄薄的叶片造成的,并且只在像恒星这样的明亮物体上才会被注意到,因为大量的光线都集中在一个地方。像LEDA48062和UGC8603星系这样较暗、较分散的物体不具备可见的衍射尖峰。哈勃最近在我们的星系邻居身上花了一些时间。LEDA48062距离银河系只有大约3000万光年,因此被纳入了"每个已知的近邻星系"的观测活动。这项活动的目的正是为了观测:银河系10兆帕斯卡(约3300万光年)以内的所有已知星系。通过了解我们的星系邻居,天文学家们可以确定各种星系中居住着什么类型的恒星,也可以绘制出宇宙的局部结构。...PC版:https://www.cnbeta.com.tw/articles/soft/1338311.htm手机版:https://m.cnbeta.com.tw/view/1338311.htm

封面图片

前往时间边缘的旅程:詹姆斯-韦伯太空望远镜揭示了最遥远的星系

前往时间边缘的旅程:詹姆斯-韦伯太空望远镜揭示了最遥远的星系JWST的最初观测产生了几个极端距离的候选星系,正如早期用哈勃太空望远镜进行的观测一样。现在,这些目标中的四个已经通过获得长时间的光谱观测得到了确认,这不仅为它们的距离提供了安全的测量,而且还使天文学家能够描述这些星系的物理特性。加州大学圣克鲁斯分校天文学和天体物理学教授布兰特-罗伯逊(BrantRobertson)说:"我们已经在遥远的宇宙中发现了奇特的早期的星系"。"通过JWST,我们现在第一次可以发现如此遥远的星系,然后通过光谱学确认它们真的有那么远。"天文学家通过确定一个星系的红移来衡量它的距离。由于宇宙的膨胀,遥远的物体似乎正在从我们身边退去,它们的光被多普勒效应拉长到更长、更红的波长。基于通过不同滤光片拍摄的图像的测光技术可以提供红移的估计,但明确的测量需要光谱学,它将来自一个物体的光分离成其组成波长。宇宙正在膨胀,这种膨胀使在空间中旅行的光被拉长,这种现象被称为宇宙学红移。红移越大,光所走过的距离就越大。因此,需要带有红外线探测器的望远镜来看到来自最早、最遥远的星系的光。资料来源:美国宇航局,欧空局,ANDL.Hustak(STSci)新的发现集中在四个红移高于10的星系上。最初由哈勃观测到的两个星系现在已经确认了10.38和11.58的红移。两个最遥远的星系,都是在JWST的图像中探测到的,它们的红移分别为13.20和12.63,使它们成为迄今为止被光谱学证实的最遥远的星系。13.2的红移对应于大约135亿年前。"这些远远超出了我们在JWST之前所能想象的发现,"罗伯逊说。"在红移13,宇宙只有大约3.25亿年的历史"。罗伯逊和来自英国赫特福德大学的艾玛-柯蒂斯-莱克是关于这些结果的两篇论文的主要作者,这些论文还没有通过同行评审。这些观测结果是由领导开发韦伯号上的两个仪器--近红外相机(NIRCam)和近红外光谱仪(NIRSpec)的科学家合作完成的。对最微弱和最早的星系的调查是这些仪器概念中的主要设计目的。2015年,这些仪器团队共同提出了JWST高级深外星系调查(JADES),这是一个雄心勃勃的计划,只分配了望远镜一个多月的时间,旨在提供一个深度和细节都前所未有的早期宇宙的视图。JADES是一个由10个国家的80多位天文学家组成的国际合作项目。JADES计划从NIRCam开始,利用超过10天的任务时间,对哈勃超深场内和周围的一小片天空进行观测。天文学家已经用几乎所有的大型望远镜研究这个区域超过20年了。JADES团队在九个不同的红外波长范围内对该区域进行了观测,捕捉到精美的图像,揭示了近10万个遥远的星系,每个星系都在数十亿光年之外。然后,研究小组使用NIRSpec光谱仪进行了为期三天的观测,收集了250个微弱星系的光线。这产生了精确的红移测量,并揭示了这些星系中气体和恒星的特性。罗伯逊说:"通过这些测量,我们可以知道这些星系的内在亮度,并计算出它们有多少恒星。"现在我们可以开始真正挑出星系是如何随着时间的推移组合在一起的。"来自英国剑桥大学的共同作者SandroTacchella补充说:"如果不了解星系发展的初始时期,就很难了解星系。就像人类一样,后来发生的很多事情都取决于这些早期恒星的影响。关于星系的许多问题一直在等待韦伯的变革性机会,我们很高兴能够在揭示这个故事中发挥作用。"根据罗伯逊的说法,这些早期星系的恒星形成会比它们被观测到的年龄早约1亿年,将最早的恒星的形成推到大爆炸后约2.25亿年。他说:"我们看到的恒星形成的证据与我们根据星系形成的模型所能预期的时间差不多早。"其他团队根据对JWST图像的光度分析,在更高的红移处发现了候选星系,但是这些星系还没有得到光谱学的证实。JADES将在2023年继续对另一个领域进行详细研究,这个领域以标志性的哈勃深场为中心,然后回到超深场进行另一轮的深度成像和光谱分析。该领域还有许多候选者等待光谱调查,已经获批了数百小时的额外观测时间。...PC版:https://www.cnbeta.com.tw/articles/soft/1353709.htm手机版:https://m.cnbeta.com.tw/view/1353709.htm

封面图片

詹姆斯·韦伯望远镜刚刚发现了两个来自宇宙早期的异常明亮的星系

詹姆斯·韦伯望远镜刚刚发现了两个来自宇宙早期的异常明亮的星系被确认的最遥远的星系被称为GLASS-z12,被认为是大爆炸后3.5亿年的产物。这些星系是在JWST的两个计划中发现的,即GLASS-JWST早期发布科学计划(来自太空的光栅放大测量)和宇宙进化早期发布科学调查(CEERS)。来自这些调查的数据确定了具有高红移的星系,这意味着由于宇宙的膨胀,来自它们的光被转移到光谱的红端。红移越大,光线在到达我们面前时已经走得越远,因此星系越老。红移越大,光线在到达我们之前已经走得越远。为了识别最古老的星系,研究人员首先观察JWST拍摄的图像,并根据其颜色选择感兴趣的星系。他们寻找那些没有出现在可见光波段但却出现在JWST红外范围内的星系。这意味着一个星系被红移了很多,以至于它的光已经移出了可见光范围,使它有可能成为一个非常早期的星系。挑战在于,还有其他原因导致一个星系可能不会出现在可见光图像中。例如,光学光线可能被灰尘阻挡,或者一个星系可能只是异常的红色。为了确认一个特定的星系真的非常古老,我们需要更多光谱学形式的数据。CEERS的共同研究者JeyhanKartaltepe说:"获得光源的光谱,当我们看到来自不同元素的发射线时,它真的告诉我们我们在看什么。因此,这是我们需要遵循的金标准。"最近宣布的两个星系还没有得到光谱测量的确认,但是最遥远的星系已经被ALMA(阿塔卡马大型毫米/亚毫米阵列)的数据初步确认。随着校准的完善,研究人员对JWST早期数据的准确性进行了一些检讨。一些非常早期的结果公布了红移高达13的星系,但是这个数字现在已经随着更精确的校准被细化为12.5。这是因为最早的数据是基于在地面上进行的校准,而最近的数据反映了10月份望远镜在太空中时进行的校准。校准JWST的仪器是一个漫长的过程,随着时间的推移,读数将变得更加精确。除了证实这些发现之外,收集这些目标的光谱学数据将使人们更深入地了解早期星系的内容。"这就像使用一个棱镜,我们能够看到不同原子元素的指纹,这些元素在星系的光谱中具有不同的颜色,"GLASS-JWST的共同研究者AlainaHenry解释说。"因此,我们得到了关于星系内容、它们形成恒星的速度以及气体运动的更详细的信息。"就目前而言,这些早期星系的极端亮度正在使天文学家们重新思考他们对最早的恒星的假设。虽然非常明亮的星系通常质量非常大,但可能这些早期明亮的星系并没有那么大的质量--它们只是充满了III类恒星。III类恒星仍然是假设性的,但这个想法是,它们是最早的恒星之一,其成分与我们今天看到的恒星不同。这开启了一个关于恒星的性质以及它们如何形成的课题,以及在非常早期形成的恒星的类型。...PC版:https://www.cnbeta.com.tw/articles/soft/1333159.htm手机版:https://m.cnbeta.com.tw/view/1333159.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人