新研发的超导纳米线光子检测器可实现高速量子通信

新研发的超导纳米线光子检测器可实现高速量子通信在Optica出版集团的高影响力研究杂志《Optica》上,由美国宇航局喷气推进实验室的MatthewD.Shaw领导的研究人员描述并展示了他们用于测量光子到达时间的新探测器,他们称之为PEACOQ(用于计算光量子的性能增强阵列)探测器。"我们的新探测器是由硅芯片上的32个氮化铌超导纳米线组成的,它可以实现高精度的高计数率,"研究小组成员、博士后学者IoanaCraiciu说。"该探测器的设计考虑到了量子通信,因为这是一个一直受限于现有探测器性能的技术领域。"研究小组负责人MatthewShaw检查了安装在低温箱内的PEACOQ探测器,以便进行测试该探测器是作为美国宇航局项目的一部分而开发的,该项目旨在实现空间到地面的量子通信新技术,从而在未来实现跨洲际距离的量子信息共享。这项工作建立在为美国宇航局深空光通信项目开发的技术基础上,该项目将首次展示来自行星际空间的自由空间光通信。Craiciu说:"目前还没有另一个探测器能够以同样的时间分辨率如此快速地计算单光子。我们知道这个探测器将对量子通信有用,但我们也希望它能实现我们尚未考虑的其他应用。"更快的量子通信加快量子通信传输速率需要在接收端有一个探测器,它可以进行快速测量,并表现出较短的死机时间,这样它就可以与到达的高速率光子抗衡。探测器还必须精确测量光子的到达时间。Craiciu说:"尽管有一些探测器可以高精度地测量光子的到达时间,但当光子快速连续到达时,它们很难跟上,可能会错过一些光子,或者把它们的到达时间弄错,我们设计的PEACOQ探测器可以精确测量单个光子的到达时间,即使它们正以很高的速度撞击探测器。它也是高效的,它不会错过许多光子。"PEACOQ探测器是由厚度仅为7.5纳米的纳米线制成的,或比人的头发薄约1万倍。在非常冷的温度下操作它--大约1开尔文,或-458°F--使纳米线变得超导,这意味着它们没有电阻。在超导条件下,任何击中一根导线的光子都有很大机会被该导线吸收。任何被吸收的光子都会产生一个热点,以一种可检测的方式增加电线的电阻。一台计算机和一个时数转换器被用来记录电阻变化的时间,从而记录一个光子到达探测器的时间。当探测器测量一个光子时,它输出一个电脉冲,而时间-数字转换器非常精确地测量这个电脉冲的到达时间,其分辨率低于100皮秒,或比弹指一挥间快7000万倍。新开发的一种新的时间-数字转换器可以用这种时间分辨率同时测量多达128个通道,这很重要,因为探测器需要32个通道。为了展示新的探测器,研究人员通过将其安装在一个低温箱中将其冷却到1开尔文。他们使用了一个定制的测试装置,将光送入低温箱到检测器,并使用一连串的电子装置将检测器的输出信号从低温箱中传输出来,将其放大并记录。由于有32根纳米线,研究人员不得不使用32套每个组件,包括32根电缆和32个每种类型的放大器。前所未有的计数能力"我们对检测器的工作情况非常满意,"Craiciu说。"它能够测量光子的速率是我们所见过的最高的。它需要一个复杂的设置,因为32个纳米线中的每一个都要单独读出,但对于你真正需要以高速度和高精度测量光子的应用来说,它是值得麻烦的。"通常情况下,正在传输的量子信息被设置为一个时钟,每条信息被编码为一个光子,并在一个刻度上发送。能多精确地测量光子到达接收器的时间,决定了抵达距离能有多近而不出错,因此它决定了能多快地发送信息。新的检测器使得以最先进的10GHz的时钟频率进行量子通信变得切实可行。研究人员仍在努力对PEACOQ探测器进行改进,目前该探测器的效率约为80%--这意味着有20%的光子撞上探测器后没有被测量。他们还计划建造一个可用于量子通信实验的便携式接收器装置。它将包含几个PEACOQ探测器以及光学器件、读出电子器件和一个低温恒温器。...PC版:https://www.cnbeta.com.tw/articles/soft/1341119.htm手机版:https://m.cnbeta.com.tw/view/1341119.htm

相关推荐

封面图片

超导纳米线:用于蛋白质离子检测的量子技术大突破

超导纳米线:用于蛋白质离子检测的量子技术大突破用超导纳米线计算单个蛋白质。背景和纳米线是在Photoshop中使用生成填充AI更改的。(人类胰岛素PDB:3I40)与传统探测器相比,超导纳米线探测器还能通过撞击能量区分大分子。这样就能更灵敏地检测蛋白质,并在质谱分析中提供更多信息。这项研究的结果最近发表在《科学进展》(ScienceAdvances)杂志上。质谱技术的进步在生命科学的许多领域,包括蛋白质研究、诊断和分析领域,对大分子的检测、识别和分析都非常有趣。质谱法通常用作一种检测系统--这种方法通常根据带电粒子(离子)的质量电荷比将其分离,并测量检测器产生的信号强度。这就提供了不同类型离子的相对丰度信息,因此也就提供了样品的组成信息。然而,传统的探测器只能对具有高冲击能量的粒子实现较高的探测效率和空间分辨率--一个国际研究小组利用超导纳米线探测器克服了这一限制。超导技术的创新应用在目前的研究中,由维也纳大学协调,与代尔夫特(SingleQuantum)、洛桑(EPFL)、阿尔梅勒(MSVision)和巴塞尔大学的合作伙伴组成的欧洲联合研究小组首次展示了在所谓的四极杆质谱法中使用超导纳米线作为蛋白质束的优秀探测器。来自待分析样品的离子被送入四极杆质谱仪进行过滤。维也纳大学物理系量子纳米物理学组的项目负责人马库斯-阿恩特(MarkusArndt)解释说:"如果我们现在使用超导纳米线代替传统的探测器,我们甚至可以识别以低动能撞击探测器的粒子。这得益于纳米线探测器的特殊材料特性(超导性)。"维也纳大学SuperMaMa实验室外景。悬挂的镀金插件是辐射防护罩,超导纳米线探测器就安装在它后面:维也纳大学量子纳米物理学实验室这种探测方法的关键在于纳米线在极低的温度下进入超导状态,在这种状态下,纳米线失去电阻,允许无损电流流动。进入的离子激发超导纳米线,使其恢复到正常导电状态(量子转换)。在这一转变过程中,纳米线电特性的变化被解释为探测信号。第一作者马塞尔-施特劳斯(MarcelStrauß)说:"通过我们使用的纳米线探测器,我们利用了从超导态到正常导电态的量子转变,因此可以比传统的离子探测器性能高出三个数量级"。事实上,纳米线探测器在极低的撞击能量下就能产生显著的量子产率,重新定义了传统探测器的可能性。"此外,采用这种量子传感器的质谱仪不仅可以根据分子的质量和电荷状态区分分子,还可以根据分子的动能对其进行分类。"马塞尔-施特劳斯(MarcelStrauß)说:"这就提高了检测能力,并为获得更好的空间分辨率提供了可能。"纳米线探测器可以在质谱分析、分子光谱分析、分子偏转测量或分子量子干涉测量等需要高效率和高分辨率的领域找到新的应用,尤其是在低冲击能量条件下。合作与资助单量子公司(SingleQuantum)领导超导纳米线探测器的研究,洛桑联邦理工学院(EPFL-Lausanne)的专家提供超冷电子器件,MSVISION公司是质谱分析领域的专家,巴塞尔大学的专家负责化学合成和蛋白质功能化。维也纳大学凭借其在量子光学、分子束和超导方面的专业知识,将所有组件整合在一起。这项工作由欧盟委员会资助,是SuperMaMa项目(860713)的一部分,该项目致力于研究用于质谱分析和分子分析的超导探测器。戈登和贝蒂-摩尔基金会(Gordon&BettyMooreFoundation)(10771)为分析修饰蛋白质提供了资助。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1404053.htm手机版:https://m.cnbeta.com.tw/view/1404053.htm

封面图片

量子纠缠光子在波士顿街道下飞行了35公里

量子纠缠光子在波士顿街道下飞行了35公里访问:NordVPN立减75%+外加3个月时长另有NordPass密码管理器就像我们所熟知的互联网一样,量子网络通过光--这里是量子纠缠光子--来发送信息。但是,它们需要"中继器",以防止这些光子像光通常所做的那样发生长距离散射,而且中继器必须能够在不破坏光子纠缠和修改信息的情况下发送光子。本次演示中部署的量子链路图。携带与量子存储器纠缠的量子信息的光子穿过剑桥和波士顿的多个街区,行程超过35公里,然后返回哈佛大学,在另一个实验室中将其纠缠转移到另一个存储器上。哈佛大学和AWS称,这些实验节点利用钻石中的空腔"捕获光线并迫使其与量子存储器相互作用"。这些节点可以利用现有的纳米加工技术批量生产。在实验过程中,研究小组将一个量子比特编码成一个光子,并将其从哈佛大学实验室的量子存储器上弹出。以下是文档摘录:当光子与量子存储器相互作用时,它就会与存储器纠缠在一起--这意味着对光子或存储器进行的测量都会提供对方的状态信息(从而修改对方的状态)。然而,光子并没有被测量(从而提取信息),而是经过量子频率转换,从可见光频率(量子存储器工作的频率)转换到电信频率(光纤中的损耗最小的频率)。然后,(现在是电信频率的)光子在地下光纤网络中来回穿梭,最后返回哈佛大学,并在那里被转换回可见光频率。最后,光子从第二个存储器弹出后,被送往一个探测器,探测器会记录光子的存在,但不会显示光中包含的任何潜在量子信息。然后,光子从可见光频率转换为电信频率,再反弹到不同的实验室,从而完成旅程。AWS称,早期实验显示,量子纠缠光子的传输距离超过35公里。纠缠光子的存储时间超过一秒,该公司称这"足以让光传播30多万公里",足以绕地球7.5圈。网络中使用的设备示意图。位于一个光子设备(左下)内的SiV与光子纠缠,光子穿过电信光纤(上),然后与位于不同位置(右)的量子存储器相互作用。最终,两个空间上分离的量子存储器之间产生了纠缠。能源部解释说,量子网络与量子计算的原理相同,都是利用光子的量子态来携带信息。量子网络的实验已经进行了一段时间了,但还没有人制造出完全商业化的版本。AWS表示,在其量子网络具备可扩展性和商业可行性之前,还需要进行更多改进。到目前为止,它的速度还很慢,而且一次只能发送一个量子存储器。...PC版:https://www.cnbeta.com.tw/articles/soft/1431207.htm手机版:https://m.cnbeta.com.tw/view/1431207.htm

封面图片

光子精度:量子物理学家如何打破敏感度的界限

光子精度:量子物理学家如何打破敏感度的界限通过频率分辨采样测量它们在分束器上的干扰,研究小组表明,在目前的技术范围内可以达到前所未有的精度,估计的误差可以通过降低光子时间带宽进一步降低。这一突破对一系列应用有重大意义,包括对纳米结构(包括生物样本)和纳米材料表面进行更可行的成像,以及基于光网络中频率分辨玻色子采样的量子增强估计。这项研究是由朴茨茅斯大学的一个科学家团队进行的,由该大学的量子科学技术中心主任VincenzoTamma博士领导。Tamma博士说:"我们的技术利用了当两个单光子撞击分光器的两个面,在分光器输出通道测量时无法区分时发生的量子干扰。如果在撞击分光器之前,一个光子由于穿过样品或被样品反射而在时间上相对于另一个光子有所延迟,那么人们可以通过探测分光器输出端光子的量子干扰来实时检索这种延迟的值,从而检索出样品的结构。当通过对两个光子的频率进行采样测量来解决这种双光子干扰时,可以实现对时间延迟的最佳测量精度。事实上,这确保了两个光子在检测器上保持完全不可区分,不管它们在输出端检测到的任何采样频率值的延迟如何。"该团队提出使用双光子干涉仪来测量两个光子在分束器处的干扰。然后,他们引入了一种基于频率分辨采样测量的技术,以自然界所允许的最佳精度来估计两个光子之间的时间延迟,并且在光子时间带宽减少的情况下,灵敏度越来越高。这一技术克服了以前的双光子干扰技术的局限性,没有在测量过程中检索到光子频率的信息。"它允许我们采用实验上可能的最短持续时间的光子,而不影响探测器上延时光子的可区分性,因此在显著减少所需光子对数量的情况下,最大限度地提高了延时估计的精度。这允许对给定的样品进行相对快速和有效的表征,为生物学和纳米工程的应用铺平道路。"这项突破性研究的应用是非常重要的。它有可能大大改善纳米结构的成像,包括生物样品和纳米材料表面。此外,它还可能导致在光网络中基于频率分辨的玻色子采样的量子增强估计。该研究的结果发表在《物理评论应用》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1358073.htm手机版:https://m.cnbeta.com.tw/view/1358073.htm

封面图片

科学家实现将单光子流转化为可以同时被检测到的光子对

科学家实现将单光子流转化为可以同时被检测到的光子对单个原子被激光激发后会散射出一个又一个光子。光学滤波器会从这些单光子流中去除某些颜色成分。这就使剩余的光子成为同时离开滤光器的光子对。资料来源:柏林洪堡大学物理系这对量子通信也很有用。研究小组现已在科学杂志《自然-光子学》(NaturePhotonics)上发表了他们的研究成果。1900年,马克斯-普朗克(MaxPlanck)提出了这样一个假设:光不能与原子等物质交换任意数量的能量,而只能交换某些被称为量子的离散"能量包"。五年后,阿尔伯特-爱因斯坦又提出,这些量子并不仅仅是一个计算量,光本身就是由量子组成的,也就是我们现在所说的光子。事实上,现在的光电二极管灵敏度足以记录单个光子。在持续照明的情况下,这些光电二极管不会产生稳定的电信号,而是会产生一系列短电流脉冲。每个电流脉冲都表示检测到一个光子。如果被激光束激发出荧光的单个原子的光照射到这种高灵敏度的光电二极管上,则永远不会同时检测到两个光子。在这方面,单个原子发出的荧光与激发它的激光不同,因为激光中的光子确实是同时出现的。但是,如果两个激光光子同时照射到一个原子上,原子只会吸收一个光子,而让第二个光子通过。随后,原子会将吸收的激光光子向随机方向辐射,只有这样它才能吸收另一个激光光子。换句话说,单个原子一次只能散射一个光子,单个原子的荧光中的光子撞击探测器时就像珍珠串一样排成一排。DAALI项目和其他量子技术研究都利用了这一特性。例如,在量子通信中,自然原子或人造原子发出的单光子被用于防窃听通信。光子对的惊人发现不过,洪堡大学的研究团队现在已经能够利用单个原子的荧光来展示一种非常令人惊讶的效果。当科学家们用滤光片去除光中的某种颜色成分时,单光子流就会转化为同时被检测到的光子对。因此,只要从单光子流中去除正确的光子,剩余的光子就会突然变成成对的光子。这种效果无法与我们日常生活中的感知相协调;如果你禁止一条街上所有的绿色汽车,剩下的汽车也不会突然成对地挨在一起行驶。此外,以前认为单个原子一次只能散射一个光子的观点似乎也被推翻了:如果通过合适的滤色镜观察,原子完全可以同时散射两个光子。大约40年前,巴黎国立高等师范学院的让-达利巴德(JeanDalibard)和塞尔日-雷诺(SergeReynaud)在他们关于原子散射光的理论研究中就预测到了这种效应。然而,直到现在,量子物理学家于尔根-沃尔兹(JürgenVolz)和阿诺-劳申博特尔(ArnoRauschenbeutel)领导的研究小组才在实验中证明了这一点。于尔根-沃尔兹说:"这是一个绝妙的例子,说明当我们试图了解微观层面的过程是如何发生的时候,我们的直觉会在多大程度上让我们失望。"阿诺-劳申博特尔(ArnoRauschenbeutel)补充说:"然而,这不仅仅是一种好奇心。事实上,产生的光子对是量子力学纠缠的。因此,在两个光子之间存在着爱因斯坦不愿相信的距离上的幽灵作用,例如,由于这种作用,人们可以传送量子态。"沃尔兹和劳申博特尔一致认为:"单个原子非常适合作为这种纠缠光子对的来源,直到最近,几乎没有人会相信这一点。"事实上,所展示的这种效应可以实现纠缠光子对的光源,其亮度达到理论上可能的最大值,从而超越现有的光源。此外,这些光子对在本质上与发射它们的原子相匹配。这样,人们就可以直接将光子与量子中继器或量子门连接起来。...PC版:https://www.cnbeta.com.tw/articles/soft/1393305.htm手机版:https://m.cnbeta.com.tw/view/1393305.htm

封面图片

量子通信网络里程碑 中国科大实现模式匹配量子密钥分发

量子通信网络里程碑中国科大实现模式匹配量子密钥分发据了解,量子密钥分发(QKD)基于量子力学基本原理,可以实现理论上无条件安全的保密通信,因此在近几十年来一直是学术界的研究热点。模式匹配量子密钥分发协议(MP-QKD)是由清华大学马雄峰研究组于2022年提出的一种新型测量设备无关量子密钥分发协议,相较于原始的测量设备无关协议(MDI-QKD),MP-QKD可以将更多的探测事件用于成码,可以很大程度提高成码率。同时,相较于双场量子密钥分发协议(TF-QKD)和相位匹配协议(PM-QKD),MP-QKD无需复杂的激光器锁频锁相技术,节省成本且降低了实际应用难度,同时对环境噪声有更好的抗干扰能力。模式匹配量子密钥分发协议示意图潘建伟、陈腾云研究组基于清华大学马雄峰研究组提出的模式匹配量子密钥分发(MP-QKD)协议,利用极大似然估计的数据后处理方法精确地估算出两个独立激光器的频率差用于参数估计,并结合中科院上海微系统所尤立星团队研制的高效率单光子探测器,实现了实验室标准光纤百公里级、两百公里级、三百公里级以及超低损光纤四百公里级的安全成码,相较于之前的原始MDI实验,成码率有明显提升,并且在三百公里和四百公里距离上较之前实验成码率提升了3个数量级。模式匹配协议的成码率比较图上述研究成果表明,MP-QKD在不需激光器锁频锁相的条件下可以实现远距离安全成码且在城域距离有较高成码率,极大地降低了协议实现难度,对未来量子通信网络构建具有重要意义。论文链接:https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.130.030801...PC版:https://www.cnbeta.com.tw/articles/soft/1342729.htm手机版:https://m.cnbeta.com.tw/view/1342729.htm

封面图片

研究人员结合诺贝尔奖获奖理念 提高量子通信的效率和安全性

研究人员结合诺贝尔奖获奖理念提高量子通信的效率和安全性纠缠光子是一种即使相隔很远也能保持连接的光粒子,2022年诺贝尔物理学奖对这方面的实验给予了肯定。IQC研究团队将纠缠与量子点(一种获得2023年诺贝尔化学奖的技术)相结合,旨在优化创建纠缠光子的过程,纠缠光子具有广泛的应用,包括安全通信。提高量子效率和纠缠度IQC和滑铁卢电气与计算机工程系教授MichaelReimer博士说:"量子密钥分发或量子中继器等令人兴奋的应用需要高度纠缠和高效率的结合,这些应用被设想用于将安全量子通信的距离扩展到全球范围或连接远程量子计算机。以前的实验只能测量到近乎完美的纠缠或高效率,但我们是第一个用量子点同时达到这两个要求的人。"纠缠光子源--嵌入半导体纳米线的铟基量子点(左),以及如何从纳米线中有效提取纠缠光子的可视化图。资料来源:滑铁卢大学通过将半导体量子点嵌入纳米线,研究人员创造出了一种能产生近乎完美的纠缠光子的光源,其效率是以前工作的65倍。这种新光源是与位于渥太华的加拿大国家研究理事会合作开发的,可以用激光激发,根据指令产生纠缠对。研究人员随后使用荷兰SingleQuantum公司提供的高分辨率单光子探测器来提高纠缠程度。历史上,量子点系统一直存在一个名为"精细结构分裂"的问题,它会导致纠缠态随时间发生振荡。这意味着使用慢速检测系统进行测量将无法测量纠缠状态,IQC和滑铁卢电气与计算机工程系博士生MatteoPennacchietti说。"我们将量子点与非常快速和精确的检测系统相结合,克服了这一难题。我们基本上可以在振荡过程中的每一点上获取纠缠态的时间戳,这就是我们拥有完美纠缠的地方。"为了展示未来的通信应用,Reimer和Pennacchietti与NorbertLütkenhaus博士和ThomasJennewein博士(两人均为IQC教师和滑铁卢物理与天文学系教授)及其团队合作。利用新的量子点纠缠源,研究人员模拟了一种称为量子密钥分发的安全通信方法,证明量子点源在未来的安全量子通信中大有可为。编译自:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1424968.htm手机版:https://m.cnbeta.com.tw/view/1424968.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人