核“爆米花”:新的研究揭示了神秘的强核力的真相

核“爆米花”:新的研究揭示了神秘的强核力的真相强核力是自然界的四种基本力之一,负责将原子核中的质子和中子固定在一起。它是一种非常短程的力,比其他基本力(如电磁力)强得多。他们的工作建立在原子结构的基础理论之上,这些理论源于阿贡物理学家和诺贝尔奖获得者玛丽亚-戈珀特-迈尔在20世纪60年代早期的研究。她帮助开发了一个核子结构的数学模型。她的模型解释了为什么原子核中一定数量的质子和中子会导致它极其稳定--这一现象在一段时间内让科学家感到困惑。镍-64原子核能量状态,当被激发到更高的能量状态时,镍-64核可以将其形状从球形变为扁形或凸形,如该图所示。资料来源:密歇根州立大学/ErinO'Donnell研究小组之前进行了类似的实验来研究强核力,研究当核子通过核反应产生激发态时,核子的结构会如何变化。这些以及在其他地方进行的其他实验促使他们研究镍-64,它有64个中子和质子。这种核是最重的稳定镍核,有28个质子和36个中子。这种镍同位素的特性使其结构在被激发到更高能量状态时发生变化。在他们的实验中,该团队使用阿贡串联林纳加速器系统(DOE科学办公室的一个用户设施)将镍-64核样品加速到铅靶上。铅原子能够通过铅的质子和镍的质子之间的排斥力产生的电磁力激发镍-64核。这个过程看起来类似于将一袋爆米花放入微波炉。随着爆米花粒的升温,它们开始爆成各种不同的形状和大小。从微波炉里出来的爆米花与进去的不一样,关键是,由于施加在它们身上的能量,这些内核改变了它们的形状。在镍-64核被激发后,一个名为GRETINA的仪器检测到了核衰变回其基态时释放的伽马射线。另一个名为CHICO2的探测器确定了参与相互作用的粒子的方向。探测器获得的数据使研究小组能够确定镍-64被激发时的形状。从对数据的分析中,研究人员得出结论,通过与铅的相互作用激发的镍-64核也改变了它们的形状,但是,镍的球形原子核并不会像爆米花那样变得蓬松,而是根据施加在它身上的能量大小,变成了两种形状之一:扁形、门把手或者凸形乃至像足球的,这一发现对于像镍-64这样由许多质子和中子组成的重核来说是不寻常的。"一个模型是现实的写照,只有当它能够解释之前的已知情况,并且具有一定的预测能力时,它才是一个有效的模型,"UNC-ChapelHill的教授和该论文的共同作者RobertJanssens说。"我们正在研究核子的性质和行为,以不断改进我们目前的强核力模型。"最终,研究人员希望他们在镍-64和周围核子中的发现能够为核科学领域未来的实际发现奠定基础,如核能、天体物理学和医学。"今天医院里50%以上的医疗程序涉及核同位素,"Janssens说。"而这些同位素大多是在做像我们这样的基础研究时发现的。"...PC版:https://www.cnbeta.com.tw/articles/soft/1341765.htm手机版:https://m.cnbeta.com.tw/view/1341765.htm

相关推荐

封面图片

环状质子提供新的洞察力 揭开早期宇宙的神秘面纱

环状质子提供新的洞察力揭开早期宇宙的神秘面纱最近在美国能源部托马斯-杰斐逊国家加速器设施进行的一项实验深入研究了质子和中子共振的三维结构。这项研究为宇宙大爆炸后混沌初开的宇宙图景提供了又一块拼图。研究核子的基本特性和行为为我们了解物质的基本组成单元提供了重要线索。核子是构成原子核的质子和中子。每个核子由三个夸克组成,在强相互作用--自然界中最强的力--的作用下被胶子紧紧地结合在一起。核子最稳定、能量最低的状态称为基态。但是,当核子被强行激发到高能状态时,它的夸克会相互旋转和振动,表现出所谓的核子共振。来自德国吉森JustusLiebig大学(JLU)和康涅狄格大学的一组物理学家领导了CLAS合作项目,开展了一项探索这些核子共振的实验。实验在杰斐逊实验室世界一流的连续电子束加速器设备(CEBAF)上进行。CEBAF是能源部科学办公室的用户设施,为全球1800多名核物理学家的研究提供支持。研究成果最近发表在著名的同行评审期刊《物理评论快报》上。分析小组负责人斯特凡-迪尔(StefanDiehl)说,该小组的工作揭示了核子共振的基本特性。Diehl是吉森联合大学第二物理研究所的博士后研究员和项目负责人,同时也是康涅狄格大学的研究教授。这项工作还激发了对共振质子三维结构和激发过程的新研究。Diehl说:"这是我们第一次进行对这种激发态的三维特征敏感的测量和观测。从原理上讲,这仅仅是个开始,这种测量正在开辟一个新的研究领域。"该实验于2018-2019年在实验大厅B进行,使用的是杰斐逊实验室的CLAS12探测器。一束高能电子束被送入冷却氢气室。电子撞击目标的质子,激发其中的夸克,并结合夸克-反夸克态(即所谓的介子)产生核子共振。这种激发稍纵即逝,但它们会以新粒子的形式留下存在的证据,这些新粒子是由受激粒子的能量裂变而成的。这些新粒子的寿命足以让探测器捕捉到它们,因此研究小组可以重建共振。Diehl等人最近在意大利特伦托举行的"用过渡GPD探索共振结构"联合研讨会上讨论了他们的研究成果。这项研究已经激励两个理论小组发表了相关论文。研究小组还计划在杰斐逊实验室利用不同的目标和极化进行更多的实验。通过极化质子的电子散射,他们可以获得散射过程的不同特征。此外,对类似过程的研究,如结合高能光子产生共振,也能提供更多重要信息。Diehl说,通过这些实验,物理学家可以弄清宇宙大爆炸后早期宇宙的特性:"一开始,早期宇宙只有一些由夸克和胶子组成的等离子体,由于能量太高,这些等离子体都在旋转。然后,在某个时刻,物质开始形成,最先形成的是激发核子态。当宇宙进一步膨胀时,它冷却下来,基态核子显现出来。""通过这些研究,我们可以了解这些共振的特征。这将告诉我们宇宙中物质是如何形成的,以及为什么宇宙以现在的形式存在。"...PC版:https://www.cnbeta.com.tw/articles/soft/1390077.htm手机版:https://m.cnbeta.com.tw/view/1390077.htm

封面图片

研究人员首次观测到核在β衰变后分解成四种粒子的现象

研究人员首次观测到核在β衰变后分解成四种粒子的现象科学家们在氧-13中发现了一种新的放射性衰变模式,在这种模式下,氧-13会分解成三个氦核、一个质子和一个正电子。得克萨斯农工大学回旋加速器研究所采用了独特的实验装置,对氧-13的衰变过程进行了密切监测,从而使这一发现成为可能。科学家们现在首次观测到了一种新的衰变模式。在这种衰变中,氧的一种较轻形式--氧-13(有8个质子和5个中子)--通过分裂成3个氦核(没有周围电子的原子)、1个质子和1个正电子(电子的反物质版本)而衰变。科学家通过观察单个原子核破裂并测量破裂产物来观察这种衰变。科学家以前曾观察到放射性衰变的有趣模式,其过程被称为"β-加衰变"。在这个过程中,质子变成中子,并通过发射正电子和反中微子来释放产生的部分能量。在最初的β衰变之后,产生的原子核可以拥有足够的能量来沸腾掉额外的粒子,使自身变得更加稳定。这种新的衰变模式是首次观测到β衰变后释放出三个氦核(α粒子)和一个质子。这些发现可以让科学家们了解衰变过程和衰变前原子核的特性。原子核经过这种新衰变模式的β衰变后产生的粒子图像。由此产生的原子核分裂成三个氦核(α)和一个质子(p),它们来自一个衰变点(红圈)。图片来源:J.Bishop提供在这项实验中,研究人员利用德克萨斯农工大学回旋加速器研究所(CyclotronInstituteatTexasA&MUniversity)的回旋加速器产生了一束高能量(约为光速的10%)的放射性原子核。他们将这束放射性物质(氧-13)送入一个名为德克萨斯主动目标时间投影室(TexATTPC)的设备中。这种物质会停在这个充满二氧化碳气体的探测器内,并在大约10毫秒后通过发射一个正电子和一个中微子(β-加衰变)而发生衰变。研究人员将氧-13逐个核植入探测器并等待其衰变,然后使用TexATTPC测量β衰变后沸腾的任何粒子。接下来,他们用计算机程序分析数据,以确定粒子在气体中留下的轨迹。这样,他们就能识别出罕见事件(每1200次衰变中才出现一次),即β-衰变后有四个粒子被释放出来。...PC版:https://www.cnbeta.com.tw/articles/soft/1382801.htm手机版:https://m.cnbeta.com.tw/view/1382801.htm

封面图片

科学家用二维凝聚态物理学揭开中子星的秘密

科学家用二维凝聚态物理学揭开中子星的秘密在致密核物质中,夸克“排列”成一维的,对单维度加时间的计算可以追踪低能量激发如何穿过核物质图片来源:布鲁克海文国家实验室核物质(包括构成原子核的质子和中子的夸克和胶子)的行为极其复杂,在我们这个三维世界中尤其如此。来自凝聚态物理学的数学技术仅考虑一个空间维度(加上时间)的相互作用,极大地简化了这一挑战。利用这种二维方法,科学家们解决了描述低能激发如何在致密核物质系统中产生涟漪的复杂方程。这项工作表明,自然界中存在如此致密核物质的中子星中心可能会以一种意想不到的形式来描述。能够理解二维夸克相互作用为理解中子星(宇宙中最稠密的物质形式)打开了一扇新的窗口。这种方法可以帮助推进当前研究这些奇异恒星的“黄金时代”。研究成功的激增是由宇宙中引力波和电磁发射的最新发现引发的。这项工作表明,对于低能量激发,三维夸克相互作用的所有复杂性都会消失。这些低能激发是中子星发射辐射或其自身旋转磁场引发的轻微扰动。这种方法还可以与重离子碰撞中产生的密度较低但温度更高的核物质中的夸克相互作用进行新的比较。现代原子核理论,称为量子色动力学涉及受强核力束缚的夸克,这种由胶子携带的力将夸克限制在核子(质子和中子)中。当核物质的密度增加时,就像中子星内部一样,致密系统的行为更像是夸克团,各个核子之间没有清晰的边界。在这种状态下,系统边缘的夸克仍然受到强力的限制,因为球形系统一侧的夸克与另一侧的夸克相互作用强烈。布鲁克海文国家实验室研究人员的这项工作利用这种强相互作用的一维性质以及时间维度来解决系统边缘附近低能量激发的行为。这些低能量模式就像自由、无质量的玻色子的模式一样——在凝聚态物质中被称为“路廷格液体”。这种方法允许科学家计算任意给定密度下的路廷格液体的参数。它将提高他们探索预计在中子星内极端密度下发生的定性新现象的能力,其中核物质的行为与普通核中的完全不同,并将其与中子星中产生的更热(万亿度)的致密核物质进行比较。...PC版:https://www.cnbeta.com.tw/articles/soft/1368165.htm手机版:https://m.cnbeta.com.tw/view/1368165.htm

封面图片

揭开质子的神秘面纱 中微子实验带来突破性的结果

揭开质子的神秘面纱中微子实验带来突破性的结果因此,科学家必须借助于实验方法来确定它们的结构。中微子实验利用由许多质子和中子结合在一起的原子核组成的目标,这使得从这些测量中推断出有关质子结构的信息变得很困难。通过从MINERvA探测器中作为氢原子核的质子散射中微子,科学家们首次提供了使用非结合质子的中微子对这种结构的测量。研究人员正在建造几个大型中微子实验,包括DUNE和桑福德地下研究设施。这些实验将有助于对中微子的特性进行精确测量。这反过来将回答关于中微子如何影响我们宇宙结构的问题。这些实验需要准确了解中微子如何与实验中的重核相互作用,例如DUNE中的氩。建立这些相互作用的理论需要将中微子与质子或中子的散射效应和核内结合的效应分开。通过测量自由质子的这一特性,MINERvA的结果将有助于建立更完整的中微子相互作用理论。这项新研究中描述的测量的主要挑战是,MINERvA的探测器中的氢在化学上与碳原子一半一半地混合在塑料中。碳原子中有六个质子,所以碳背景反应要大得多。通过开发一种新的技术来测量反应中的出射中子的方向,质子上的反μ子中微子产生反μ子和中子,研究人员可以将这两种反应类型分开。这样就可以利用中微子束中相同的平行反应来研究残余背景,在氢原子上不可能发生反应。这种结构的测量被解释为质子的轴向矢量形式因子,这是中微子散射所揭示的结构的一个技术术语,这样它就可以被用作预测中微子反应的输入。...PC版:https://www.cnbeta.com.tw/articles/soft/1355909.htm手机版:https://m.cnbeta.com.tw/view/1355909.htm

封面图片

奇妙的波浪: 物理学家揭示了镍磁体中的自旋激子

奇妙的波浪:物理学家揭示了镍磁体中的自旋激子在《自然-通讯》杂志上发表的一项研究中,研究人员报告说在钼酸镍这种层状磁性晶体中发现了不寻常的特性。被称为电子的亚原子粒子类似于微小的磁铁,而且它们通常像罗盘针一样在磁场中定位。在实验中,中子从晶体内的磁性镍离子中散射出来,研究人员发现,每个镍离子的两个最外层电子表现得不同。这两个电子不是像罗盘针一样排列它们的自旋,而是在物理学家称之为自旋单子的现象中相互抵消。该研究的通讯作者、莱斯大学的戴鹏程说:"这样的物质根本就不应该是磁铁。而且,如果一个中子从一个特定的镍离子上散射下来,激发应该保持在局部,而不是在样品中传播。"戴鹏程是莱斯大学物理学和天文学教授。因此,当中子散射实验中的仪器检测到不是一个,而是两个系列的传播波时,戴鹏程和他的合作者感到惊讶,每个波的能量都有很大的不同。为了了解这些波的起源,有必要深入研究磁性晶体的原子细节。例如,来自晶体中原子的电磁力可以与磁场竞争,并影响邻近原子内的电子。这被称为晶体场效应,它可以迫使电子自旋沿着与磁场方向不同的方向定向。探测钼酸镍晶体的晶场效应需要额外的实验和对实验数据的理论解释。莱斯大学的合作者EmiliaMorosan说:"实验小组和理论之间的合作对于描绘一幅完整的画面和理解在这种化合物中观察到的不寻常的自旋激发是最重要的。"莫罗桑的研究小组利用比热测量探测了晶体对温度变化的热反应。从这些实验中,研究人员得出结论,在层状钼酸镍中出现了两种晶体场环境,而且这两种环境对镍离子的影响非常不同。研究报告的共同作者、帮助解释实验数据的莱斯大学理论物理学家AndriyNevidomskyy说:"在一种情况下,场效应相当弱,对应的热能约为10开尔文。在几开尔文的温度下,看到中子可以激发镍原子的磁自旋波,这也许并不令人惊讶,因为镍原子受到这种第一类晶体场的影响。但最令人费解的是看到它们来自受第二种类型影响的镍原子。那些原子周围有四面体排列的氧原子,电场效应几乎强了20倍,这意味着激发的产生要难得多。"Nevidomskyy说:"这可以理解为如果相应的镍离子上的自旋具有不同的"质量"。这个比喻是指重的篮球与网球混在一起,为了激发第二种类型的自旋,即较重的篮球,我们必须通过向材料照射更多的高能中子来施加更强的'踢'。"由此产生的对镍自旋的影响被称为自旋激子,人们通常会期望激子产生的"踢"的效果被限制在一个单一的原子中。但是实验的测量结果表明,"篮球"在一致地运动,创造了一种意想不到的波。更令人惊讶的是,这些波似乎在相对较高的温度下仍然存在,在那里晶体不再表现为磁铁。内维多姆斯基和来自加利福尼亚大学圣巴巴拉分校的理论家合著者莱昂-巴伦茨提供的解释是:较重的自旋激子--比喻中的篮球--随着周围较轻的磁性激子--比喻中的网球--的波动而晃动,如果这两类球之间的相互作用足够强,较重的自旋激子参与到类似于波的连贯运动中。"特别有趣的是,"戴说,"两种镍原子各自形成一个三角形晶格,因此这个晶格内的磁相互作用是受挫的。"在三角形晶格的磁性中,挫折指的是使所有的磁矩相对于它们的三个近邻反平行(上下)对齐的困难。了解磁挫折在三角形晶格中的作用是戴和Nevidomskyy两人多年来一直致力于解决的长期挑战之一。Nevidomskyy说:"找到一个谜题,与自己的预期相反,然后感到一种了解其起源的满足感,这是非常令人兴奋的。"...PC版:https://www.cnbeta.com.tw/articles/soft/1358691.htm手机版:https://m.cnbeta.com.tw/view/1358691.htm

封面图片

物理学家发现原子核基态的分子结构

物理学家发现原子核基态的分子结构中国科学院近代物理研究所(IMP)的科学家及其合作者最近在原子核基态中发现了一种分子型结构。该研究成果发表在《物理评论快报》上,并作为"物理学特写"文章进行了重点报道。原子核是一个由质子和中子组成的量子多体系统,小得令人难以置信(只有原子的万分之一),但它却容纳了原子总质量的99.9%以上。核子之间的相互作用产生了各种有趣的核结构,从球形核到变形核,甚至是表面密度稀疏的中子晕。在这些结构中出现的团簇结构是一个引人入胜的现象。反运动学中的簇敲除反应示意图。资料来源:李鹏杰团簇结构的意义原子核的基态很少出现簇状结构。关于基态团簇结构的讨论可以追溯到1938年,当时理论物理学家通过分析α共轭核的结合能,提出在铍-8、碳-12和氧-16等原子核的基态中可能存在类似α分子的团簇结构。然而,由于经典壳模型的单粒子描述很受欢迎,这一理论假设仍未得到验证。IMP的科学家及其合作者利用一种涉及逆运动学敲除反应的新颖实验方法,验证了富中子原子核铍-10的基态存在分子型结构。该实验在日本理化学研究所西奈中心的放射性同位素束工厂(RIBF)进行。在实验中,铍-10的次级束以一半光速轰击一个2毫米厚的固体氢靶。束缚在铍-10原子核内的α原子团被质子击出,几乎没有动量转移到残余原子核上,从而保留了铍-10基态原子团结构的信息。铍-10原子核的类分子结构。资料来源:IMP李鹏杰证实长期存在的假设实验结果表明,敲除反应的实验截面与微观模型下的理论预测之间存在显著的一致性。这一验证支持了关于铍-10基态分子态结构的长期假说,即铍-10形成了一个α-α哑铃形内核,两个价中子垂直于内核轴旋转。论文第一作者、来自IMP的李鹏杰博士说:"类似的结构在原子尺度上也能发现,但在原子核的基态中却异常罕见。"这项研究首次为原子核基态分子态结构的理论描述提供了实验证据,并为进一步探索富中子核基态α簇结构的演化铺平了道路。...PC版:https://www.cnbeta.com.tw/articles/soft/1401029.htm手机版:https://m.cnbeta.com.tw/view/1401029.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人