科学家发现机械刺激可用于强化肌肉

科学家发现机械刺激可用于强化肌肉这项研究在未来可以应用于改善老年人的平衡能力,并帮助减少跌倒,这可以通过可穿戴设备或每天的刺激课程来应用。每年仅髋部骨折就占了180万个住院床日和11亿英镑的医院费用,这还不包括社会护理的高成本。该研究的另一个潜在好处是,这种类型的刺激可以应用于运动员,以减少他们的肌肉反应时间,该研究的目的是找出机械振动是否能改善我们身体的处理和反应方式。17名年龄在20至28岁之间的年轻男性和女性成年志愿者分别站在平台上,类似于健身房里的振动板,这引起了腿部肌肉的收缩。小腿肌肉是目标,因为这些肌肉的动作对保持稳定的直立姿势贡献最大。研究人员以30赫兹的频率刺激他们的小腿,并记录了四次一分钟不受干扰的平衡试验,以进行基线测量,并将读数与刺激后的测量进行比较。进行实验后,他们发现自己的平衡能力似乎有所提高。这项研究由机械、生物医学和设计工程高级讲师AntonioFratini博士和博士生IsottaRigoni领导,并已发表在《科学报告》上。弗拉蒂尼博士说。"我们对我们的结果感到兴奋,因为它们可能对大量的人的健康和生活质量产生有益的影响。全身振动起初会挑战平衡,引发更大的努力来控制直立的姿态,并将肌肉调制转向脊柱上控制,导致肌肉招募的重新校准。神经肌肉系统似乎能从这种破坏中恢复过来,并在较长的时间间隔内重新获得控制权"。"事实上,虽然肌肉招募和皮质努力在长期内似乎没有改变,但除了仍然明显受到影响的小腿肌肉外,平衡似乎不仅得到了恢复,而且还得到了改善。"...PC版:https://www.cnbeta.com.tw/articles/soft/1342551.htm手机版:https://m.cnbeta.com.tw/view/1342551.htm

相关推荐

封面图片

科学家发现新型锂离子导体 可用于强化电动汽车电池

科学家发现新型锂离子导体可用于强化电动汽车电池利物浦大学的一个团队开发出了一种新型固态锂离子导体,可以取代电池中的液态电解质,从而提高安全性和效率。图片表示锂离子(蓝色)在结构上移动。资料来源:利物浦大学这种新材料由无毒的地球富集元素组成,具有足够高的锂离子传导性,可以取代目前锂离子电池技术中的液态电解质,提高安全性和能量容量。该大学的跨学科研究团队采用变革性科学方法来设计这种材料,他们在实验室中合成了这种材料,确定了它的结构(原子在空间中的排列),并在电池中进行了演示。这种新材料是极少数能达到足以取代液态电解质的高锂离子电导率的固体材料之一,并且由于其结构而能以一种新的方式工作。这一发现是通过合作计算和实验工作流程实现的,该流程利用人工智能和基于物理学的计算来支持大学化学专家的决策。这种新材料为化学优化提供了一个平台,以进一步提高材料本身的性能,并根据研究提供的新认识来确定其他材料。利物浦大学化学系马特-罗森斯基(MattRosseinsky)教授说:"这项研究展示了一种新型功能材料的设计和发现。这种材料的结构改变了人们以往对高性能固态电解质的理解。具体来说,具有多种不同移动离子环境的固体可以表现出很好的性能,而不仅仅是离子环境范围很窄的少数固体。这极大地开拓了进一步发现的化学空间。"最近的报道和媒体报道预示着人工智能工具已被用于寻找潜在的新材料。在这种情况下,人工智能工具是独立工作的,因此很可能会以各种方式重现它们接受过的训练,生成的材料可能与已知材料非常相似。"这篇发现研究论文表明,人工智能和由专家调配的计算机可以解决现实世界材料发现的复杂问题,在这个问题上,我们寻求的是成分和结构上有意义的差异,其对性能的影响要根据理解来评估,我们的颠覆性设计方法为发现这些以及其他依赖离子在固体中快速运动的高性能材料提供了一条新的途径"。这项研究由利物浦大学化学系、材料创新工厂、利弗胡尔姆功能材料设计研究中心、史蒂芬森可再生能源研究所、阿尔伯特-克鲁中心和工程学院的研究人员共同努力完成。并得到了工程与物理科学研究理事会(EPSRC)、勒弗胡尔姆信托基金会(LeverhulmeTrust)和法拉第研究所(FaradayInstitution)的资助。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1420615.htm手机版:https://m.cnbeta.com.tw/view/1420615.htm

封面图片

神经酰胺的抗衰老秘密:科学家发现减缓肌肉衰退的潜在关键

神经酰胺的抗衰老秘密:科学家发现减缓肌肉衰退的潜在关键随着年龄的增长,小鼠和人类都倾向于变得不那么活跃,失去肌肉质量和力量。由EPFL的JohanAuwerx领导的科学家最近发现,衰老的小鼠的肌肉中积累了神经酰胺。神经酰胺通常用于护肤品,是一种鞘磷脂,一类脂肪分子,执行各种细胞功能,而不是用于能量生产。研究人员发现,在衰老过程中,蛋白质SPT和其他蛋白质的含量过高,所有这些都需要将脂肪酸和氨基酸转化为神经酰胺。医学博士、该研究的主要作者Pirkka-PekkaLaurila博士说:"鞘脂和神经酰胺是复杂但非常有趣的脂肪类,进一步研究它们在衰老中的作用有很大的潜力,因为它们有许多不同的功能。"接下来,科学家希望观察减少神经酰胺的过载是否能防止与年龄相关的肌肉功能衰退。他们用神经酰胺阻断剂(如myriocin和合成阻断剂Takeda-2)治疗老年小鼠,并使用腺相关病毒专门阻断肌肉中的神经酰胺合成。神经酰胺阻断剂防止了衰老过程中的肌肉质量损失,使小鼠更加强壮,并使它们能够跑更远的距离,同时改善它们的协调性。为了更深入地研究这一效果,科学家们使用一种叫做RNA测序的技术测量了肌肉中每一个已知的基因产物。该研究的主要合作者MartinWohlwend博士解释说:"事实证明,阻断神经酰胺的产生会激活肌肉干细胞,使肌肉积累更多的蛋白质,并将纤维类型转向快速抽动的糖酵解,从而在老年小鼠中产生更大和更强的肌肉。"最后,科学家们研究了减少肌肉中的神经酰胺是否也会对人类有益。他们检查了来自赫尔辛基的数千名70-80岁的男性和女性,发现其中25%的人有一种特殊形式的基因,这种基因会减少肌肉中鞘脂类生产途径的基因产物。拥有这种降低神经酰胺的基因形式的人能够走得更久,更强壮,并且能够更好地从椅子上站起来,表明他们的衰老更健康,这与用神经酰胺阻断剂治疗的小鼠相似。JohanAuwerx说:"这些发现非常重要,因为它们为我们提供了开发抑制剂的强大动力,这些抑制剂可以在人类身上进行测试。科学家们现在正着手与制药业进行合作。"...PC版:https://www.cnbeta.com.tw/articles/soft/1343809.htm手机版:https://m.cnbeta.com.tw/view/1343809.htm

封面图片

科学家发现面部电刺激会影响情绪感知 微笑是看到幸福的秘诀

科学家发现面部电刺激会影响情绪感知微笑是看到幸福的秘诀一股无痛的电流瞬间操纵着肌肉,让人情不自禁地露出短暂的微笑。这是首次证明面部电刺激会影响情绪感知。科布博士希望这项研究能探索出治疗抑郁症或影响表达的疾病(如帕金森症和自闭症)的潜在方法。刺激装置特写。资料来源:埃塞克斯大学他说:"有控制地、短暂而微弱地激活面部肌肉,就能让原本中性甚至略带悲伤的面部产生快乐的错觉,这一发现具有突破性意义。它与关于面部反馈在情绪感知中的作用的理论辩论有关,并具有未来临床应用的潜力。"科布医生使用的是法国医生DuchennedeBoulogne在19世纪首次开发的一种技术的现代化版本。这段视频介绍了这一突破性技术。资料来源:埃塞克斯大学达尔文在《人和动物的情感表达》一书中发表了杜肯的研究成果,这是他关于进化论的第三部重要著作。然而,为了确保参与者的安全和更好地控制微笑,新实验的电压被调低了。实验方法和结果通过使用计算机,研究小组能够以毫秒级的精度控制微笑的开始。共有47人参加了埃塞克斯大学的这项研究,研究结果发表在《社会认知与情感神经科学》(SocialCognitiveandAffectiveNeuroscience)杂志上。他们看到了数字头像,并被要求评估它们看起来是快乐还是悲伤。在一半的试验中,微笑肌肉在表情开始时被激活。结果表明,500毫秒的微弱微笑足以诱发幸福感。科布博士说,这些结果有助于我们了解面部反馈,他希望能扩大这项研究。他说:"我们目前正在开展更多研究,以进一步探索健康参与者的这一现象。不过,我们希望将来能将这种技术应用于探索面部情绪识别,用于帕金森病等疾病患者,因为众所周知,帕金森病患者的自发面部模仿能力下降,面部情绪识别能力受损。此外,我们还发布了相关指南,以便其他研究人员能够安全地开始使用面部肌肉电刺激技术。"编译自:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1424118.htm手机版:https://m.cnbeta.com.tw/view/1424118.htm

封面图片

科学家发现一种能使肌肉明显变强的基因

科学家发现一种能使肌肉明显变强的基因研究人员发现了一种在运动时能增加肌肉力量的基因,为创造能复制健身的一些好处的治疗方法打开了大门。墨尔本大学科学家领导的这项新研究发表在《细胞代谢》上,证明了各种形式的运动如何改变我们肌肉中的分子,并导致了新的C18ORF25基因的发现,该基因被所有形式的运动激活,并负责增强肌肉力量。缺乏C18ORF25的动物的肌肉较弱,运动表现较差。PC版:https://www.cnbeta.com/articles/soft/1314611.htm手机版:https://m.cnbeta.com/view/1314611.htm

封面图片

日本科学家创造出遥控半机械蟑螂

日本科学家创造出遥控半机械蟑螂日本研究人员近日设计了一个用于制造遥控半机械蟑螂的系统,该系统配备了一个微型无线控制模块,该模块由连接到太阳能电池的可充电电池供电。尽管有机械装置,但超薄的电子器件和柔性材料使昆虫能够自由移动。这些成就将有助于使半机械昆虫的使用成为实际的现实。由日本理化学研究所(RIKEN)先锋研究集群(CPR)的研究人员领导的一个国际团队9月5日在科学杂志《npj-柔性电子》上报告了这项成果。科学家们一直在尝试设计半机械昆虫来帮助检查危险区域和监测环境。然而,为了使半机械昆虫的使用具有实用性,处理者必须能够长时间远程控制它们。这就需要对它们的腿部部分进行无线控制,由一个微小的可充电电池供电。保持电池充足的电量是至关重要的--没有人希望有一群突然失去控制的半机械蟑螂在周围游荡。虽然可以建造为电池充电的对接站,但返回和充电的需要会扰乱时间敏感的任务。因此,一个最佳的方法是包括一个机载太阳能电池,可以持续确保电池保持充电状态。当然,所有这些都是说起来容易做起来难。为了成功地将这些设备集成到表面积有限的蟑螂身上,工程团队需要开发一个特殊的背包和超薄的有机太阳能电池模块。他们还需要一个粘附系统,以保持机械长时间的附着,同时还允许自然运动。在RIKENCPR的KenjiroFukuda领导下,研究小组用马达加斯加蟑螂进行了实验,这些蟑螂大约有6厘米(2.4英寸)长。他们使用一个特别设计的背包将无线腿部控制模块和锂聚合物电池安装在昆虫胸部的顶部。这是以一只模型蟑螂的身体为模型,用弹性聚合物进行3D打印。结果是一个与蟑螂的弯曲表面完全吻合的背包,使坚硬的电子设备能够稳定地安装在蟑螂胸部超过一个月。超薄的0.004毫米厚的有机太阳能电池模块被安装在腹部的背面。据Fukuda称:“安装在身体上的超薄有机太阳能电池模块实现了17.2mW的功率输出,这比目前活体昆虫上最先进的能量采集装置的功率输出大50多倍。”事实证明,超薄和灵活的有机太阳能电池,以及它与昆虫的连接方式,对于确保运动自由是必要的。在仔细研究了蟑螂的自然运动后,科学家们意识到腹部会改变形状,外骨骼的部分会重叠。为了适应这种情况,他们在薄膜上交织了粘性和非粘性部分,这使它们能够弯曲,但也能保持连接。当测试较厚的太阳能电池薄膜时,或者当薄膜被均匀地附着时,蟑螂跑相同的距离需要两倍的时间。它们在仰卧时也很难摆正自己的位置。一旦这些组件被整合到蟑螂体内,再加上刺激腿部节段的电线,新的机械人被测试。用假太阳光给电池充电30分钟,用无线遥控器让动物左右转动。“考虑到基本运动过程中胸部和腹部的变形,胸部的刚性和柔性元件以及腹部的超软装置组成的混合电子系统似乎是机械蟑螂的有效设计,”Fukuda说。“此外,由于腹部变形不是蟑螂所独有的,我们的策略可以适用于其他昆虫,如甲虫,甚至将来可能适用于像蝉这样的飞行昆虫。”...PC版:https://www.cnbeta.com/articles/soft/1312593.htm手机版:https://m.cnbeta.com/view/1312593.htm

封面图片

科学家创造出带有人类肌肉基因的酵母

科学家创造出带有人类肌肉基因的酵母生物技术专家PascaleDaran-Lapujade及其代尔夫特理工大学的团队成功地将人类肌肉基因插入到面包酵母的DNA中。这是科学家们首次有效地将人类的一个关键特征插入到酵母细胞中。他们的研究已于最近发表在《CellReports》上。Daran-Lapujade的实验室向酵母细胞引入了一种特性,这种特性由人类无法离开的10个基因集合所调控;它们携带着一种被称为代谢途径的过程的蓝图,这种代谢途径分解糖来收集能量并在肌肉细胞内产生细胞构建块。由于这一机制涉及许多疾病--包括癌症,所以修改后的酵母可以用于医学研究。Daran-Lapujade说道:“现在我们了解了整个过程,医学家们可以将这种人性化的酵母模型作为药物筛选和癌症研究的工具。”人类和酵母是相似的根据Daran-Lapujade的说法,酵母和人类之间有很多相似之处。“这似乎很奇怪,因为酵母是以单细胞形式生存的,而人类由一个复杂得多的系统组成,但细胞的运作方式非常相似。”因此,科学家们经常将人类基因转移到酵母中。因为酵母除去了人体中可能存在的所有其他相互作用,它创造了一个干净的环境,研究人员可以在其中分析一个单一的过程。Daran-Lapujade指出:“跟人体细胞或组织相比,酵母是一种神奇的生物体,因为它的生长简单且它的遗传易得性:它的DNA可以很容易地被修改以解决基本问题。许多关键性的发现如细胞分裂周期都是由于酵母而被阐明的。”人性化的酵母Daran-groupLapujade's之前成功地设计了人工染色体,其被作为一个DNA平台运作以在酵母中构建新功能。他们想测试一下,加入几个人类基因和完整的代谢途径,他们能走多远,细胞是否还能作为一个整体运作。“如果我们把控制人类肌肉的糖分消耗和能量生产的同一组基因加入到酵母中会怎么样?”Daran-Lapujade提问道,“我们能在酵母中把这样一个重要而复杂的功能人性化吗?”对于博士生和共同第一作者FrancineBoonekamp和EwoutKnibbe来说,工程化的酵母出奇地简单。“我们不只是将人类基因移植到酵母中,我们还删除了相应的酵母基因并用人类肌肉基因完全取代它们。你可能认为你不可能将酵母的版本跟人类的版本进行交换,因为在人类和酵母细胞中,这是一个如此特殊和严格调节的过程。但它像一个魅力一样发挥作用!”Daran-Lapujade解说道。进一步的人性化通过跟BarbaraBakker教授的实验室(格罗宁根大学医学中心)的合作,研究人员利用了实验室培养的人类组织细胞以比较了人类基因在酵母中的表达和在原生人类肌肉环境中的表达。在酵母中产生的人类酶和在其原生人类细胞中产生的人类酶的特性非常相似,这支持了新的人源化酵母作为人类细胞模型的价值。这一个过程只是人类新陈代谢的一小部分。酵母和人类细胞之间还有许多类似的过程,可以在人源化酵母中进行研究。虽然Daran-Lapujade专注于工程酵母的基础和技术方面,因此不打算自己研究人源化酵母的应用,但她希望跟其他有兴趣使用该工具的科学家进行合作。“这只是一个起点,我们可以...PC版:https://www.cnbeta.com/articles/soft/1301605.htm手机版:https://m.cnbeta.com/view/1301605.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人