《三体》中的人列计算机看不懂?没关系,先来看看这个

《三体》中的人列计算机看不懂?没关系,先来看看这个图片来自《三体》电视剧截图我们往大了看看计算机的硬件系统基本结构。拿一台现代计算器的各个硬件部分来具象,就能很好的做一个对应。输入设备,譬如鼠标、键盘等;控制器和运算器,往往合称为中央处理单元,即CPU(CentralProcessingUnit)等;存储器,顾名思义,是我们常说的内存条和硬盘等;输出设备,显示器、打印机、音响等。这一套硬件组成系统被称为冯·诺依曼体系,由这位数学家冠名创立。但并非他凭空想象而成,而是总结前人经验所得。因为在电子计算器普及之前,还经历了手动计算器和机械计算器的时代。冯·诺依曼也沿袭着「路径依赖」这一创造规则,简称踩着巨人的肩膀前行。接下来,咱们就一探究竟。朋友,请举例一款计算器,要是你脑子里立刻想到的!我想,大多数人脑中浮现的都会是电子计算器,带电的,能自动计算。只需要用按键输入数据和运算法则,结果会自动输出到一块电子屏上。常见到不起眼……如果你凑巧最近还看了点古装剧,脑中应该还会想到噼里啪啦打得精妙的算盘。使用算盘进行计算,全由人手在扒拉算珠操作,计算过程靠的也还是我们人脑在记背的珠算口诀,而算珠排布的变化展示的则是其中的寄存结果。这一类属于手动计算器,可做不到自动计算。不卖关子了。这篇文章,我们就聊聊介于这两者之间的机械计算器。01、机械计算器的现代身影第一次工业革命的代表是用机器取代人力、畜力,人类进入机器时代。第二次工业革命的代表是电力的大规模应用,我们进入了电力时代。现在我们处在第三次工业革命,各类信息技术和科技创新带来的现代便利中,更直白点,我们处于一种只一眼是看不懂事物原理的时代。计算器的发展也跟着上面的时代潮流在发展,经历了三个阶段,从手动计算器到电子计算器,这中间还经历过机械计算器的阶段。只是这个阶段已经被「日新月异」掉了,甚至让人觉得好像从未展现在我们面前?毕竟,四十岁以下的朋友们出生时,周围身边物品全带电了…我说的是电力。然而,实际上我们所有人的身边,都还有机械计算机残留的熟悉身影。不信就来看看?02、后期的机械计算器我们先来看一款在机械计算器时期比较后期的机器Divisumma24,它能以每分钟250次循环的速度依次快速加、减、乘、除运算。这台由MarcelloNizzoli设计的机器于1963年9月开始在意大利被Olivetti公司大批量生产制造。选它介绍的原因,是这台机械计算器在上个世纪七十年代的市场上足够成功——共生产了约600万台,也是该公司在全世界销量最多的机械计算器型号。正因为是机械计算器时期比较后期的产品,这台机械计算器并非是完全的纯机械设计,需要外接一个下图最右侧的70瓦蜗杆电机作为动力源进行驱动。整机内部没有电路板,也没有传感器,没有任何什么高科技到令人看不懂的现代元器件。它有的只是齿轮、弹簧、连动杆等共约3800个机械零部件在相互配合着完成工作。这也说明,在它闪亮登场的时代,这样的机械工艺水平已然登峰造极。图片来自Multyplus1操作时,我们只需要输入要做计算的数字,然后计算的不同阶段和输出结果,都会分成两种不用颜色的墨水被打印到机器上方的一卷纸带上。下图我们可以通过观察机器的计算时间,感知到这台机械计算器在不同运算法则下的计算速度。比如12加45,这个57的计算结果几乎是立刻就被输出到纸带上。45乘78的运算结果3510却需要停顿一阵。图片来自Angelo3800个零部件的组装,即便是二十一世纪的现代人,也不能毫无痛苦地看懂……忍不住要发出「什么样的头脑,能设计出这种东西」的感慨。03、相似的打字机看到这里,仔细观察的你有没有发现这台机械计算器,似乎和打字机有一些相像?一样的按键下压作为输入,一样的纸带打字输出结果。说出你的大胆推测?对,它们在设计上确实一脉相承!工程师CamilloOlivetti在1908年初创以姓氏命名的公司Olivetti时,最初生产的就是打字机。我们不妨来看看这同一家公司在1950s生产的OlivettiLettera22打字机,作为那个年代最具标志性的打字机之一,还在1959年被美国伊利诺伊理工学院选为过去100年最佳设计产品。这款打字机也由Divisumma24机械计算器的设计师MarcelloNizzoli进行设计,如果你有机会去纽约的MoMA,也就是现代艺术博物馆(MuseumofModernArt),还能看到这款永久收藏品。图片来自YEGTypewriters04、设计趋同如此相似的设计,就要说到设计方法上的一种现象——设计趋同。有时为了减少使用者的认知成本,能快速的适应一种新产品,商业设计的一些功能和布局会呈现趋同化。除此之外,这也减轻了设计师的创新压力,对于工厂的大批量生产来说也减轻了开模和工人组装的负担。可以说是设计史上的前人栽树,后人乘凉。也正是因为设计趋同,即便是被科技飞速发展逐渐淘汰的奇思妙想,已然分不清究竟是谁模仿了谁,但总还能发掘出曾经的技术遗迹。现今,上图这类机械打字机已经很少有人在使用了,但我正敲击着的键盘和显示器上呈现的文字,不正以电子计算机这一另外的形式,延续着它曾经存留世间的痕迹吗?05、早期的机械计算器我们看过了后期的机械计算器,被它的精妙结构所震撼,赶紧来看一款早期的机械计算器平复一下心情。时间往前倒推300余年,一款1642年由布莱兹·帕斯卡发明的滚轮式加法器,也被称为帕斯卡计算器。这款机械计算器,可以直接对两个数字进行加减运算。那一年,发明者年仅19岁,初衷只是为了减轻作为税务官的父亲的工作量。帕斯卡这个名字是不是有些耳熟?我们在初中科学课上学过的压强单位帕斯卡(Pa),也是因为他的杰出贡献而以他的名字命名。这是一位科学史上杰出的数学家、物理学家、化学家、气象学家……来看下图的实操,正在拨动下方的转盘依次输入两个数字,要进行加法或减法运算。图片来自YvesSerra简单的看一个单独的转盘内联结机构的内部原理。图片来自ColegiulEconomicIonGhica不同转盘间的联动,则是当一个转盘的数值达到10,也就是说转了一圈后,这个齿就会驱动第二个齿轮,完成升位。06、做加法的水表这个升位的小机械结构,你应该会非常熟悉。水表,其实就是一种二十一世纪还在使用的机械加法计算器,只是现在自动计算的是你家的用水量。我们来看一个速度式水表拆解后的下层,找的图源自流体力学的模拟资料。所谓的速度式水表,就是机械结构通过水流速度的快慢推算你的用水量多少。能看到一个个模拟水流的小球是先经过了滤网,再推动腔体中的叶轮旋转。图片来自TintschlBEStAG(english)叶轮上同轴接的齿轮,会延伸进水表的上层。这里面是一成套的减速齿轮组。由它们再驱动读书盘,步进着去显示做加法。一样是后一个转盘的转一圈,完成一次进位。可以说齿轮成了这类机械设备的心脏。图片来自Tech&Lifestyle简单的了解机械计算器阶段的头尾两款机器。我们就会发现这类机器发展的最大限制,已经是材料本身,机械零部件本身的质量让组装和设计变得异常复杂。但也正是因为机械结构的复杂性,赋予了机械计算器极高的欣赏价值,这或许也是人们迷恋「蒸汽朋克」这一科幻题材的原因所在。好在,我们的生活会一直建立在过去的智慧之上,只是换了一种表达形式。参考文献:[1]http://www.marcello-nizzoli.com/[2]https://amer...PC版:https://www.cnbeta.com.tw/articles/soft/1343723.htm手机版:https://m.cnbeta.com.tw/view/1343723.htm

相关推荐

封面图片

特斯拉已经开始生产Dojo超级计算机 训练其自动驾驶车队

特斯拉已经开始生产Dojo超级计算机训练其自动驾驶车队该公司在报告中表示:“我们正在内部开发这些支柱。本月,我们开始生产我们的道场训练计算机,这是向更快更便宜的神经网络训练迈出的一步。”特斯拉已经拥有一个基于英伟达GPU的超级计算机,它是世界上最强大的计算机之一,但新的道场定制计算机使用了特斯拉设计的芯片。2019年,特斯拉首席执行官埃隆·马斯克给这台“超强大的训练计算机”起了一个名字:道场(Dojo)。此前,马斯克曾声称,道场将能够达到每秒一亿亿次(1018)浮点运算。这是一种难以置信的能力。“要想匹配一台每秒可执行一亿亿次浮点运算的计算机系统所能做的事情,你必须每秒进行一次计算,持续31688765000年”,《网络世界》(NetworkWorld)写道。在2021年的特斯拉AI日(AIDay),道场仍然是一个进行中的项目。高管们展示了其第一块芯片和训练模组(trainingtiles),这些模组最终将发展成一个完整的道场集群或“超级节点”。特斯拉表示,它将在一个托盘中组合2x3个模组,并在一个计算机柜中放置两个托盘,每个柜子可提供超过100petaflops(每秒1015次浮点运算)的计算能力。在一个由10个柜子组成的系统中,特斯拉的道场超级节点将突破每秒一亿亿次浮点运算的计算能力。一年后,在2022年的AI日上,特斯拉展示了道场的一些进展,包括拥有一个完整的系统托盘。当时,特斯拉谈到了在2023年初拥有一个完整的集群。不过现在看来,可能要到2024年初才能实现。...PC版:https://www.cnbeta.com.tw/articles/soft/1372013.htm手机版:https://m.cnbeta.com.tw/view/1372013.htm

封面图片

世界首台人脑神经形态超级计算机DeepSouth即将问世

世界首台人脑神经形态超级计算机DeepSouth即将问世事实上,按照目前的趋势,仅NVIDIA销售的人工智能服务器每年消耗的能源就可能超过许多小国,在一个极力去碳化的世界里,这样的能源负荷是一个巨大的拖累。不过,大自然已经解决了这个问题。人类的大脑仍然是目前最先进的,能够从少量杂乱、嘈杂的数据中快速学习,或每秒处理相当于十亿亿次的数学运算,而能耗却只有区区20瓦。这就是西悉尼大学的一个团队正在建造DeepSouth神经形态超级计算机的原因-这是有史以来第一台能够模拟人脑规模的尖峰神经网络的机器。国际神经形态系统中心(InternationalCentreforNeuromorphicSystems)主任安德烈-范-沙克(AndrévanSchaik)教授说:"我们无法大规模模拟类似大脑的网络,这阻碍了我们在理解大脑如何利用神经元进行计算方面取得进展。在使用图形处理器(GPU)和多核中央处理器(CPU)的标准计算机上模拟尖峰神经网络实在是太慢太耗电了。我们的系统将改变这种状况。这个平台将增进我们对大脑的了解,并在传感、生物医学、机器人、太空和大规模人工智能应用等不同领域开发大脑规模的计算应用。"DeepSouth预计将于2024年4月上线。研究团队预计,它将能够高速处理海量数据,同时由于采用了尖峰神经网络方法,体积比其他超级计算机小得多,能耗也低得多。它采用模块化可扩展设计,使用市场上可买到的硬件,因此将来可以扩展或收缩,以适应各种任务的需要。该企业的目标是让人工智能处理更接近人脑的工作方式,同时学习更多关于大脑的知识,并希望取得与其他领域相关的进展。值得注意的是,其他研究人员正在从相反的方向研究同样的问题,一些团队现在已经开始使用真正的人类脑组织作为半机械计算机芯片的一部分,并取得了令人印象深刻的成果。了解更多:https://www.westernsydney.edu.au/newscentre/news_centre/more_news_stories/world_first_supercomputer_capable_of_brain-scale_simulation_being_built_at_western_sydney_university...PC版:https://www.cnbeta.com.tw/articles/soft/1404339.htm手机版:https://m.cnbeta.com.tw/view/1404339.htm

封面图片

Mathlab 计算器 v2023.07.165 专业版

名称:Mathlab计算器v2023.07.165专业版描述:Mathlab计算器专业版(GraphingCalculatorMathlab)是一款强大的安卓平台的科学计算器软件.Mathlab科学图形计算器集代数方程式计算器,具备图形,表格,常数,函数强大功能,是中小学,大学,甚至研究生及其它任何需要复杂运算的场景科学计算器工具.mathlab计算器破解版不仅只计算出结果,甚至连过程都能显示.链接:https://pan.quark.cn/s/3a18a67cac48大小:N标签:#Android#Mathlab#quark来自:雷锋频道:@yunpanshare群组:@yunpangroup投稿:@kejiqubot

封面图片

IBM计算机“基准”实验显示量子计算机将在两年内超越传统计算机

IBM计算机“基准”实验显示量子计算机将在两年内超越传统计算机这项新研究的成果发表在上周的《自然》杂志上。科学家们使用IBM量子计算机Eagle来模拟真实材料的磁性,处理速度比传统计算机更快。IBM量子计算机之所以能超越传统计算机,是因为其使用了一种特殊的误差缓解过程来补偿噪声带来的影响。而噪声正是量子计算机的一个基本弱点。基于硅芯片的传统计算机依赖于“比特(bit)”进行运算,但其只能取0或1这两个值。相比之下,量子计算机使用的量子比特可以同时呈现多种状态。量子比特依赖于量子叠加和量子纠缠等量子现象。理论上这使得量子比特的计算速度更快,而且可以真正实现并行计算。相比之下,传统计算机基于比特的计算速度很慢,而且需要按顺序依次进行。但从历史上看,量子计算机有一个致命的弱点:量子比特的量子态非常脆弱,来自外部环境的微小破坏也会永远扰乱它们的状态,从而干扰所携带的信息。这使得量子计算机非常容易出错或“出现噪声”。在这一新的原理验证实验中,127量子比特的Eagle超级计算机用建立在超导电路上的量子比特计算了二维固体的完整磁性状态。然后,研究人员仔细测量每个量子比特所产生的噪声。事实证明,诸如超级计算材料中的缺陷等因素可以可靠预测每个量子比特所产生的噪声。据报道,研究小组随后利用这些预测值来模拟生成没有噪音的结果。量子霸权的说法之前就出现过。2019年,谷歌的科学家们声称,公司开发的量子计算机Sycamore在200秒内解决了一个普通计算机需要1万年才能破解的问题。但谷歌量子计算机所解决的问题本质上就是生成一长串随机数,然后检查它们的准确性,并没有什么实际用途。相比之下,用IBM量子计算机完成的新实验是一个高度简化但有真实应用价值的物理问题。2019年谷歌量子霸权研究成果参与者之一、加州大学圣巴巴拉分校物理学家约翰·马丁尼斯(JohnMartinis)表示,“这能让人们乐观认为,它将在其他系统和更复杂的算法中发挥作用。”(辰辰)...PC版:https://www.cnbeta.com.tw/articles/soft/1366285.htm手机版:https://m.cnbeta.com.tw/view/1366285.htm

封面图片

Nature封面:量子计算机离实际应用还有两年

Nature封面:量子计算机离实际应用还有两年搭载“鹰”芯片的量子计算机这种障碍叫做“量子噪声”,会导致计算结果出现错误。研究团队对处理器中的每一个量子比特的噪声逐一进行测量,推测出了零噪声情况下系统的状态。根据观察和推测结果,团队研发出了全新的“误差缓解”技术。利用这种技术,团队在127量子比特的鹰处理器上成功进行了一次复杂运算。IBM量子研发部门高级主管SarahSheldon表示,我们可以开始设想用量子计算机解决一些此前无解的问题。相关论文已经在最新一期的Nature中发表,并登上封面。最新一期的NaturePodcast当中也介绍了这一研究成果。节目当中主持人评价IBM在量子计算不被看好的情况下做出的这一举动“十分勇敢”但也“拥有确凿证据”。而今年晚些时候,IBM还将发布1121量子比特的秃鹰(Condor)芯片。消灭不掉噪声,就抵消它由于量子纠缠效应的存在,量子不只有0和1两种存在方式,还有它们的叠加态。这使得量子运算的效率从理论上看显著高于传统的只有0和1两种状态的计算机。但实际上,量子计算机并未投入实际应用。原因有点无语——量子运算虽然快,但是错误率也很高。而出错背后的罪魁祸首,就是量子噪声。根据海森堡测不准原理,环境中无时无刻不充满波动的能量,哪怕温度低到绝对零度,也无法消除。量子永不停息的波动导致了它们之间彼此的拥挤、碰撞,这就是量子噪声的来源。对于单个量子,噪声带来的误差可能并不高(低于1%)。但量子计算机是由大量量子组成的复杂系统,各量子产生的误差叠加之后就变得不可忽视了。除了要解决量子噪声问题,IBM认为,还需保证量子处理器具有一定的规模和运算速度。消除量子噪声的过程称为量子纠错,方法是用更多的量子比特来描述一个量子比特,以便有错误时可以纠正。但这一思路的缺陷明显——我们根本无法操控如此之多的量子比特。因此,对于量子噪声,现在普遍采用的处理方式是抵消其影响,而非直接消除。传统的抵消方式是对误差信息实时监测并建立抵消算法,但随着量子比特数的增多,也出现了性能瓶颈。IBM团队研发了一种全新的抵消方式,绕开了这一瓶颈的限制。这种方式的核心是两种关键技术:脉冲拉伸(PulseStretching)和零噪声外推(ZeroNoiseExtrapolation)。脉冲拉伸是通过延长每个量子比特的操作时间,使量子误差被放大,更加有利于观测。这一过程中,IBM采用了物理学上常用的伊辛模型(Isingmodel)。其最基本的假设是相互作用只在最近邻的自旋之间存在。具体到这一项目,量子比特的排列方式是设定模型点阵排列方式的依据。尽管排列方式一致,伊辛模型却是独立于处理器硬件存在的。零噪声外推则是根据采集到的放大不同比例后的误差信息(采集量远低于传统方式),建立函数模型。根据函数模型外推出零点值,即为没有误差存在时的运算结果。尽管仍存在一定的局限性,但经过这种方式抵消一些误差后的量子处理器已经可以进行一些运算操作。IBM团队将其成果送到了加州大学伯克利分校进行效果测评,和他们的超级计算机进行比较。结果显示,鹰芯片驱动的量子计算机的计算结果与真实值的接近程度远高于传统计算机。不过,IBM的研究人员指出,采用这种抵消方式消除噪声影响只是一种短期策略。IBM也在逐步扩大其处理器所包含的量子比特数量。据研究人员预计,到2033年将制造出超过10万量子比特的处理器,届时量子误差将得到根源性的解决。...PC版:https://www.cnbeta.com.tw/articles/soft/1365823.htm手机版:https://m.cnbeta.com.tw/view/1365823.htm

封面图片

日本团队开发出“光量子计算机”运算纠错技术

日本团队开发出“光量子计算机”运算纠错技术日本东京大学等的研究团队日前在美国《科学》杂志上发表成果称,开发出能自行纠正“光量子计算机”运算错误的方法。“光量子计算机”是使用光的下一代计算机,这正是这种计算机所面临的最后课题。研究量子信息科学的东大教授古泽明表示:“原理层面的开发已完成。今后将迎来新的时代。”据悉,他们将在9月成立风险企业以推动成果转化。量子计算机使用信息的基本单位“量子比特”,即使是复杂的运算也能高速执行,但过程中容易出现运算错误。使用超导体或离子的计算机已开发出纠错功能,但需要大量量子比特和复杂的布线。此外还存在计算机体积变大和耗电量大的问题。团队此次开发出了高性能的光检测仪,成功创造出一种名为“GKP量子比特”的特殊光状态,它能在运算的同时纠错。包含大量光子的单个光信号工作原理与排列大量量子比特的状态相同,因此有望在计算机体积不增大的情况下提高运算能力。

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人