NASA的NuSTAR望远镜揭示了我们太阳上隐藏的灯光秀

NASA的NuSTAR望远镜揭示了我们太阳上隐藏的灯光秀太阳上的隐秘光景图片来源:NASA/JPL-Caltech/JAS。NASA/JPL-Caltech/JAXA我们的恒星发出的光比我们的肉眼所能看到的还要多,这不令人惊讶。毕竟,我们可以利用人类大脑无法自行看到的不同波长的光,以更深刻的方式观察宇宙。但是,太阳上的这些隐藏的光秀并不是什么新东西。事实上,每颗恒星都会放出大量不同类型的X射线和光线,让这些恒星的表面和大气层中的各种材料发出不同的光线和能量变化。这是因为太阳上的一些隐藏的光是由恒星内较热或较冷的区域造成的。美国宇航局喷气推进实验室分享的一张新图片给我们提供了美国宇航局NuSTAR望远镜收集的数据和日本日之出任务上的X射线望远镜的数据的组合。该图像还包括来自太阳动力学观测站的数据,并让我们看到了太阳上隐藏的光束。此外,美国宇航局还包括一个概述,对提供数据的三张图片进行了细分,以便你可以看到这些天文台观察太阳的不同方式。NASA希望NuSTAR对太阳的观察,有助于揭示这些隐藏的光展,可以帮助解释日冕的奥秘。来自美国宇航局JPL的消息:"太阳出现的样貌取决于谁在看。从左起,NASA的NuSTAR看到的是高能量的X射线;日本宇宙航空研究开发机构的Hinode任务看到的是低能量的X射线;而NASA的太阳动力学观测站看到的是紫外线。"图片来源/NASA/JPL-Caltech/JAXA这种外层大气长期以来一直是天文学家们困惑不解的实体,因为它可以达到100多万度,比恒星表面至少热100倍。这种热量的分布长期以来一直让科学家们感到困惑,希望通过研究这些隐藏的灯光秀,他们可以了解大气层是如何变热的,以及是什么创造了太阳上这些隐藏的灯光秀。与接触太阳大气层的帕克太阳探测器所进行的观测一起,美国宇航局将有大量的数据可以挖掘和尝试理解。希望这一切能让我们对我们的恒星有更多了解。但是,如果没有,至少我们在这个过程中看到了太阳上的一些隐藏的灯光表演。...PC版:https://www.cnbeta.com.tw/articles/soft/1343967.htm手机版:https://m.cnbeta.com.tw/view/1343967.htm

相关推荐

封面图片

NASA核光谱望远镜阵列揭示了太阳上隐藏的灯光秀

NASA核光谱望远镜阵列揭示了太阳上隐藏的灯光秀在上面的合成图中,NuSTAR的数据以蓝色表示,并与日本宇宙航空研究开发机构日之出任务的X射线望远镜(XRT)的观测数据(绿色)和美国宇航局太阳动力学观测站(SDO)的大气成像组件(AIA)的观测数据(红色)相叠加。NuSTAR的视场相对较小,这意味着它无法从地球轨道上的位置看到整个太阳,因此该天文台对太阳的看法实际上是25张图像的马赛克拼图,拍摄于2022年6月。在这里可以看到美国宇航局NuSTAR观测站探测到的高能X射线的隔离。添加了一个网格来表示太阳的表面。资料来源:NASA/JPL-Caltech/JAXA由NuSTAR观测到的高能X射线只出现在太阳大气层中的几个位置。相比之下,Hinode的XRT探测的是低能X射线,SDO的AIA探测的是紫外光--这些波长的光线在太阳的整个表面都有发射。NuSTAR的视野可以帮助科学家们解决关于我们最近的恒星的最大谜团之一:为什么太阳的外层大气-日冕可以达到100多万度--至少比其表面热100倍。这让科学家们感到困惑,因为太阳的热量来源于它的核心并向外传播。这就像火周围的空气比火焰要热100倍一样。日冕的热量来源可能是太阳大气中的小爆发,耀斑是大范围的热、光和粒子的爆发,可以被广泛的太阳观测站看到。小耀斑是小得多的事件,但这两种类型产生的物质甚至比日冕的平均温度还要热。普通耀斑并不经常发生,不足以使日冕保持科学家观察到的高温,但小耀斑可能发生得更频繁--也许频繁到足以集体加热形成日冕。观察主体不同,太阳的形态千差万别。从左起,美国宇航局的NuSTAR看到的是高能量的X射线;日本宇宙航空研究开发机构的Hinode任务看到的是低能量的X射线;美国宇航局的太阳动力学观测站看到的是紫外线。资料来源:NASA/JPL-Caltech/JAXA尽管单个小耀斑太过微弱,无法在太阳的炽热光线中进行观测,但NuSTAR可以探测到被认为是在大量小耀斑相互靠近时产生的高温物质的光线。这种能力使物理学家能够研究小耀斑的发生频率以及它们如何释放能量。...PC版:https://www.cnbeta.com.tw/articles/soft/1346411.htm手机版:https://m.cnbeta.com.tw/view/1346411.htm

封面图片

韦伯望远镜揭示蛇夫座星云中的壮观恒星喷流

韦伯望远镜揭示蛇夫座星云中的壮观恒星喷流在美国宇航局詹姆斯-韦伯太空望远镜上的近红外相机(NIRCam)拍摄的这幅蛇夫座星云图像中,天文学家发现在一个小区域内(左上角)有一组排列整齐的原恒星外流。在韦伯望远镜的图像中,这些喷流呈现出红色的明亮块状条纹,这是喷流撞击周围气体和尘埃产生的冲击波。资料来源:NASA、ESA、CSA、STScI、KlausPontoppidan(NASA-JPL)、JoelGreen(STScI)在星云的一个区域,韦伯已经将以前看似模糊的球状物解析成了清晰的原恒星外流。更让研究人员惊讶的是,这些外流被看成是排列整齐的,这表明我们在这一区域的历史上捕捉到了一个独特的时刻,并提供了恒星诞生的基本信息。在韦伯太空望远镜的新图像中首次进行了同类检测美国国家航空航天局詹姆斯-韦伯太空望远镜的近红外相机(NIRCam)首次捕捉到了天文学家一直希望直接拍摄的现象。在这幅令人惊叹的蛇夫座星云图像中,这一发现位于这个年轻的、附近恒星形成区的北部区域(见左上方)。天文学家发现了一组有趣的原恒星外流,它们是新生恒星喷出的气体射流与附近的气体和尘埃高速碰撞后形成的。通常情况下,这些天体在一个区域内会有不同的方向。然而,在这里,它们朝着同一个方向倾斜,程度相同,就像暴风雨中倾泻而下的雨夹雪。韦伯望远镜精湛的空间分辨率和近红外波长的灵敏度使得发现这些排列整齐的天体成为可能,这为了解恒星是如何诞生的基本原理提供了信息。位于加利福尼亚州帕萨迪纳市的美国宇航局喷气推进实验室的首席研究员克劳斯-庞托皮丹(KlausPontoppidan)说:"天文学家长期以来一直认为,当云层坍缩形成恒星时,恒星会趋向于朝同一方向旋转。然而,这种现象以前从未如此直接地出现过。这些排列整齐、拉长的结构是恒星诞生的基本方式的历史记录"。这张来自美国宇航局詹姆斯-韦伯太空望远镜的图片显示了蛇夫座星云的一部分,天文学家在这里发现了一组排列整齐的原恒星外流。这些喷流以红色的明亮块状条纹为标志,这是喷流撞击周围气体和尘埃产生的冲击波。在这里,红色代表分子氢和一氧化碳的存在。资料来源:NASA、ESA、CSA、STScI、KlausPontoppidan(NASA-JPL)、JoelGreen(STScI)恒星形成的机理那么,恒星喷流的排列与恒星的旋转有什么关系呢?当星际气体云撞向自身形成恒星时,它的旋转速度会更快。气体继续向内移动的唯一方法就是去除部分自旋(称为角动量)。年轻恒星周围会形成一个物质盘,将物质向下输送,就像排水口周围的漩涡一样。内盘中的漩涡磁场将部分物质发射成双子喷流,以垂直于物质盘的相反方向向外喷射。在韦伯望远镜的图像中,这些喷流以红色的明亮块状条纹为标志,这是喷流撞击周围气体和尘埃产生的冲击波。在这里,红色代表分子氢和一氧化碳的存在。这幅图像显示的是美国宇航局詹姆斯-韦伯太空望远镜的近红外相机(NIRCam)看到的蛇夫座星云中心。在这幅图像中,整个区域中不同色调的丝状物和缕状物代表了云中仍在形成的原恒星反射的星光。在某些区域,反射光前方有尘埃,在这里呈现出橙色的漫射阴影。资料来源:NASA、ESA、CSA、STScI、KlausPontoppidan(NASA-JPL)、JoelGreen(STScI)增强型成像技术韦伯望远镜的主要作者、巴尔的摩太空望远镜科学研究所的乔尔-格林(JoelGreen)说:"蛇夫座星云的这一区域--蛇夫座北星云--只有在韦伯望远镜上才能清晰地看到。我们现在能够捕捉到这些极其年轻的恒星和它们的外流,其中一些恒星以前只是以圆球的形式出现,或者由于它们周围厚厚的尘埃而在光学波长下完全看不到。"天文学家说,在年轻恒星生命的这一时期,有几种力量可能会改变外流的方向。其中一种方式是双星相互旋转,摆动方向,随着时间的推移扭曲外流的方向。这幅由韦伯近红外相机(NIRCam)拍摄的蛇夫座星云图像显示了罗盘箭头、比例尺和供参考的色键。向北和向东的罗盘箭头显示了图像在天空中的方位。请注意,相对于地面地图上的方向箭头(从上往下看),天空中的北方和东方之间的关系(从下往上看)是颠倒的。刻度条标注的单位是光年,也就是光在一个地球年所走过的距离。一光年约等于5.88万亿英里或9.46万亿公里。这张图片显示的是不可见的近红外光波长,这些波长已被转换成可见光的颜色。色键显示了在收集光线时使用了哪些NIRCam滤光片。每个滤光片名称的颜色就是用来表示通过该滤光片的红外光的可见光颜色。资料来源:NASA、ESA、CSA、STScI、KlausPontoppidan(NASA-JPL)、JoelGreen(STScI)蛇夫座星云的恒星蛇夫座星云距离地球1300光年,只有一两百万年的历史,从宇宙的角度来看非常年轻。它也是一个新形成的恒星(约10万年)特别密集的星团的所在地,在这张图片的中心可以看到。其中一些恒星的质量最终将达到我们太阳的质量。格林说:"韦伯望远镜是一台年轻恒星天体探测机器。在这个领域中,我们可以捕捉到每一颗年轻恒星的路标,直至质量最低的恒星。我们现在看到的是一幅非常完整的画面。"在这张照片的整个区域中,不同色调的丝状物和缕状物代表了云中仍在形成的原恒星反射的星光。在某些区域,反射光前方有灰尘,在这里呈现出橙色的漫射阴影。2020年,美国宇航局哈勃太空望远镜的数据显示,一颗恒星的行星形成盘发生了扇动或移动,"蝙蝠阴影"由此得名。在韦伯图像的中心位置可以看到这一特征。未来研究之路新图像和偶然发现的对齐天体实际上只是这项科学计划的第一步。研究小组现在将利用韦伯望远镜的近红外摄谱仪(NIRSpec)来研究云的化学构成。天文学家们对确定挥发性化学物质如何在恒星和行星形成过程中存活下来很感兴趣。挥发性物质是在相对较低的温度下升华或从固态直接转变为气态的化合物,包括水和一氧化碳。然后,他们将把他们的发现与在类似类型恒星的原行星盘中发现的数量进行比较。"从最基本的形式来看,我们都是由来自这些挥发物的物质构成的。地球上的大部分水起源于数十亿年前太阳还是一颗幼年原恒星的时候,"庞托皮丹说。"观察原恒星在形成原行星盘之前这些关键化合物的丰度,有助于我们了解太阳系形成时的独特环境。"这些观测是第1611号一般观测者计划的一部分。研究小组的初步结果已被接受在《天体物理学报》上发表。詹姆斯-韦伯太空望远镜(JWST)是一个大型天基观测站,将于2021年12月发射。它是哈勃太空望远镜的科学继承者。JWST配备了一个6.5米长的主镜,专门观测红外光谱中的宇宙,使其能够比以往任何时候都能回溯到更久远的过去。这种能力使望远镜能够研究最初星系的形成、恒星和行星系统的演化以及遥远系外行星的大气层。JWST位于第二拉格朗日点(L2),距离地球约150万公里,旨在提供前所未有的分辨率和灵敏度,为探索宇宙打开新的窗口。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1435872.htm手机版:https://m.cnbeta.com.tw/view/1435872.htm

封面图片

韦伯望远镜揭示冷褐矮星上奇特的甲烷活动

韦伯望远镜揭示冷褐矮星上奇特的甲烷活动这幅艺术家的概念图描绘了距离地球47光年的褐矮星W1935。天文学家利用美国宇航局的詹姆斯-韦伯太空望远镜发现了来自W1935的甲烷红外辐射。这是一个意想不到的发现,因为这颗褐矮星非常寒冷,而且缺少一颗主恒星;因此,没有明显的能量来源来加热它的上层大气,使甲烷发光。研究小组推测,甲烷的发射可能是由于产生极光的过程造成的,这里的极光显示为红色。资料来源:NASA、ESA、CSA、LeahHustak(STScI)褐矮星的质量比行星大,但比恒星轻,在我们的太阳系附近无处不在,已发现的褐矮星有数千颗。去年,美国自然历史博物馆的高级研究科学家兼高级教育经理杰基-法赫蒂(JackieFaherty)带领一个研究小组,获得了在JWST上研究12颗褐矮星的时间。其中包括CWISEPJ193518.59-154620.3(简称W1935)-47光年外的一颗冷褐矮星,它是由《后院世界:行星9号》公民科学志愿者丹-卡塞尔登(DanCaselden)和美国宇航局CatWISE团队共同发现的。W1935是一颗寒冷的褐矮星,表面温度约为华氏400度,也就是烘烤巧克力饼干的温度。W1935的质量还不是很清楚,但很可能是木星质量的6-35倍。在观察了用JWST观测到的一些褐矮星后,Faherty的研究小组注意到W1935看起来很相似,但有一个惊人的例外:它正在释放甲烷,这是以前从未在褐矮星上看到过的。这项研究的第一作者法赫蒂说:"巨行星和褐矮星中会有甲烷气体,但我们通常看到的是甲烷气体吸收光线,而不是发光。我们一开始对自己看到的东西感到困惑,但最终这种困惑转化成了对这一发现的兴奋。"计算机建模还发现了另一个惊喜:这颗褐矮星很可能存在温度倒置现象。绕恒星运行的行星很容易出现温度倒置现象,但W1935是孤立的,没有明显的外部热源。赫特福德大学的合著者本-伯宁厄姆(BenBurningham)说:"当模型明确预测出温度反转时,我们感到非常惊喜。但我们还必须搞清楚,大气上层额外的热量来自哪里。"为了进行研究,研究人员将目光转向了太阳系。特别是,他们研究了木星和土星,这两颗行星都有甲烷排放和温度倒置现象。太阳系巨行星上出现这种特征的可能原因是极光,因此,研究小组推测他们在W1935上也发现了同样的现象。行星科学家知道,木星和土星极光的主要驱动力之一是来自太阳的高能粒子,它们与行星的磁场和大气相互作用,加热了上层。这也是我们在地球上看到极光的原因,通常被称为北极光或南极光,因为它们在两极附近最为特别。但是,由于W1935没有主星,太阳风无法解释其原因。太阳系中的极光还有一个原因。木星和土星都有活跃的卫星,它们偶尔会向太空喷射物质,与行星相互作用,并增强这些世界的极光足迹。木星的卫星木卫一是太阳系中火山最活跃的世界,它喷出的熔岩喷泉高达几十英里,土星的卫星土卫二从喷泉中喷出的水蒸气在进入太空时同时冻结和沸腾。虽然还需要更多的观测,但研究人员推测,W1935上极光的一种解释可能是一颗活跃的、尚未被发现的卫星。"每当天文学家将JWST对准一个天体时,就有可能有令人震撼的新发现,"法赫蒂说。"在我们开始这个项目时,甲烷发射并不在我的关注范围内,但现在我们知道它可能存在,而且对它的解释如此诱人,我就一直在寻找它。这就是科学向前发展的一部分。"编译自/scitechdaily....PC版:https://www.cnbeta.com.tw/articles/soft/1427685.htm手机版:https://m.cnbeta.com.tw/view/1427685.htm

封面图片

NASA斯皮策望远镜发现仙女座超大质量黑洞的进食习惯

NASA斯皮策望远镜发现仙女座超大质量黑洞的进食习惯这些仙女座星系的图像使用的是美国宇航局退役的斯皮策太空望远镜的数据。上图显示了多个波长的图像,揭示了恒星、尘埃和恒星形成的区域。下图只显示了尘埃,更容易看到星系的底层结构。资料来源:NASA/JPL-Caltech在美国国家航空航天局(NASA)退役的斯皮策太空望远镜(SpitzerSpaceTelescope)拍摄的图像中,数千光年长的尘埃流流向仙女座星系中心的超大质量黑洞。原来,这些尘埃流可以帮助解释质量是太阳数十亿倍的黑洞是如何饱餐一顿,却又"安静"地吃东西的。当超大质量黑洞吞噬气体和尘埃时,这些物质在掉入黑洞之前会被加热,从而产生令人难以置信的光影效果--有时比整个星系的恒星还要亮。当物质以不同大小的团块形式被吞噬时,黑洞的亮度就会发生波动。但是,位于银河系(地球的母星系)和仙女座(我们最近的星系邻居之一)中心的黑洞是宇宙中最安静的吞噬者之一。它们发出的微弱光线在亮度上没有明显变化,这表明它们吃的是少量但稳定的食物流,而不是大块的食物。这些食物流以螺旋的方式一点一点地接近黑洞,就像水流顺着下水道旋转一样。今年早些时候发表的一项研究将"安静的超大质量黑洞以稳定的气体流为食"这一假设应用到了仙女座星系。作者利用计算机模型模拟了仙女座超大质量黑洞附近的气体和尘埃随着时间的推移会有怎样的表现。模拟结果表明,超大质量黑洞附近可能会形成一个小的热气体盘,并不断为其提供能量。无数的气体和尘埃流可以补充和维持这个圆盘。但研究人员也发现,这些气流必须保持在一个特定的大小和流速范围内;否则,物质会以不规则的团块形式落入黑洞,造成更多的光波动。这张仙女座星系中心的特写照片是由美国宇航局退役的斯皮策太空望远镜拍摄的,上面用蓝色虚线标注了两股尘埃流流向星系中心的超大质量黑洞(用紫色圆点表示)的路径。资料来源:NASA/JPL-Caltech当作者将他们的发现与来自斯皮策和美国宇航局哈勃太空望远镜的数据进行比较时,他们发现斯皮策之前识别出的尘埃螺旋符合这些限制条件。由此,作者得出结论,这些螺旋体正在为仙女座的超大质量黑洞提供能量。加那利群岛天体物理研究所和慕尼黑大学天文台的天体物理学家阿尔穆德纳-普列托(AlmudenaPrieto)是今年发表的研究报告的共同作者之一。"我们有了20年前的数据,这些数据告诉了我们一些我们最初收集这些数据时没有意识到的东西。"斯皮策号于2003年发射升空,由美国宇航局喷气推进实验室(JPL)负责管理,它利用人眼看不见的红外光研究宇宙。不同的波长显示了仙女座的不同特征,包括较热的光源(如恒星)和较冷的光源(如尘埃)。通过分离这些波长并单独观察尘埃,天文学家可以看到星系的"骨架"--气体凝聚和冷却的地方,有时会形成尘埃,为恒星的形成创造了条件。仙女座星系的这一景象给我们带来了一些惊喜。例如,虽然仙女座星系和银河系一样是一个螺旋星系,但它的中心是一个巨大的尘埃环,而不是环绕其中心的明显的臂。图像还显示,在环的一部分有一个二级洞,一个矮星系从那里穿过。仙女座靠近银河系,这意味着从地球上看它比其他星系更大:用肉眼看,仙女座的宽度大约是月球宽度的六倍(约3度)。即使斯皮策望远镜的视场比哈勃望远镜更宽,它也必须拍摄11000张快照,才能绘制出仙女座的全貌。JPL为位于华盛顿的美国宇航局科学任务局管理斯皮策太空望远镜任务,直到该任务于2020年1月退役。科学运作在加州理工学院的斯皮策科学中心进行。航天器的运行由位于科罗拉多州利特尔顿的洛克希德-马丁航天公司负责。数据存档在加州理工学院IPAC管理的红外科学档案馆。加州理工学院为美国国家航空航天局管理JPL。编译自/scitechdaily...PC版:https://www.cnbeta.com.tw/articles/soft/1432516.htm手机版:https://m.cnbeta.com.tw/view/1432516.htm

封面图片

NASA最新太空望远镜将勘测4.5亿个星系 绘制宇宙地图

NASA最新太空望远镜将勘测4.5亿个星系绘制宇宙地图美国国家航空航天局(NASA)为绘制宇宙地图而设计的SPHEREx太空望远镜已进入最后准备阶段。它将于2025年4月发射,研究水和生命必需元素的起源、星系的形成以及宇宙的早期膨胀。SPHEREx采用红外技术,其数据将由一个全球团队进行分析并公布于众。资料来源:加州理工学院SPHEREx是"宇宙历史、再电离纪元和冰探索者光谱光度计"的简称,它像一个牛角号,不过它将高达8.5英尺(约合2.6米),宽近10.5英尺(约合3.2米)。该天文台的锥形光子防护罩是其独特的外形,目前正在南加州美国宇航局喷气推进实验室的无尘室中进行组装。美国宇航局SPHEREx任务的有效载荷副经理兼有效载荷系统工程师萨拉-苏斯卡(SaraSusca)抬头查看航天器的一个光子防护罩。这些同心锥可以保护望远镜免受来自太阳和地球的光和热的影响,这些光和热会使望远镜的探测器不堪重负。图片来源:NASA/JPL-CaltechSPHEREx的望远镜周围将环绕着三个圆锥体,每个圆锥体之间相互依偎,以保护其免受太阳和地球的光和热的影响。航天器将扫描天空的每一个部分,就像扫描地球仪内部一样,每年完成两幅全天空地图。图为美国宇航局SPHEREx望远镜光子防护罩的一部分正在加利福尼亚州斯托克顿的应用航空结构公司进行组装。图片来源:AACS"SPHEREx必须非常灵活,因为飞船在扫描天空时必须相对快速地移动,"JPL的副有效载荷经理兼有效载荷系统工程师萨拉-苏斯卡(SaraSusca)说。"看起来并不是这样,但防护罩实际上很轻,是由一层层像三明治一样的材料制成的。外面是铝板,里面是铝蜂窝结构,看起来像纸板--轻便但坚固。"NASA的SPHEREx将绘制出一幅独一无二的天空地图。视频中展示了这项任务用来进行尖端科学研究的一些特殊硬件。图片来源:NASA/JPL-Caltech任务目标SPHEREx最迟将于2025年4月发射升空,它将帮助科学家更好地了解水和生命所需的其他关键成分的起源地。为此,这项任务将测量星际气体云和尘埃云中水冰的丰度,新恒星诞生于此,行星也最终形成于此。它将通过测量星系产生的集合光来研究星系的宇宙历史。这些测量结果将有助于弄清星系是何时开始形成的,以及它们的形成随着时间的推移发生了怎样的变化。最后,通过绘制数百万个星系的相对位置图,SPHEREx将寻找新的线索,了解宇宙是如何在大爆炸后的几分之一秒内迅速膨胀或膨胀的。图为NASASPHEREx任务的机械集成负责人AmeliaQuan与V形槽散热器在一起,该硬件将有助于保持太空望远镜的低温。图片来源:NASA/JPL-Caltech冷却和稳定SPHEREx将通过探测红外光来实现这一切,红外光的波长范围比人眼所能看到的可见光还要长。红外线有时也被称为热辐射,因为所有温暖的物体都会发出红外线。甚至望远镜也能产生红外光。由于红外光会干扰望远镜的探测器,因此望远镜必须保持低温--低于零下350华氏度(约零下210摄氏度)。外部的光子防护罩将阻挡来自太阳和地球的光和热,锥体之间的缝隙将防止热量向望远镜内部传入。但是,为了确保SPHEREx的工作温度能降到冰点,它还需要一种叫做V形槽散热器的机构:三面锥形镜子,每一面都像一把倒置的伞,堆叠在一起。每块镜子都位于光子防护罩的下方,由一系列楔形镜片组成,可以重新定向红外光,使其通过防护罩之间的缝隙反弹到太空中。这样就可以带走通过支架从室温航天器总线(包含计算机和电子设备)传出的热量。JPL的康斯坦丁-佩纳宁(KonstantinPenanen)是这次任务的有效载荷管理员。"如果温度发生变化,可能会改变探测器的灵敏度,从而产生错误信号"。NASASPHEREx任务的望远镜在JPL进行测试。它被倾斜放置在底座上,这样它就能看到尽可能多的天空,同时又能在三个同心锥的保护范围内,防止来自太阳和地球的光和热。图片来源:NASA/JPL-加州理工学院天空之眼SPHEREx的核心当然是它的望远镜,它使用三面镜子和六个探测器从遥远的光源收集红外光。望远镜倾斜放置在底座上,这样它就能在光子防护罩的保护下看到尽可能多的天空。该望远镜由位于科罗拉多州博尔德的波尔宇航公司制造,5月份运抵位于加利福尼亚州帕萨迪纳的加州理工学院,在那里与探测器和V形槽辐射器集成在一起。然后,在JPL,工程师们将其固定在一个振动台上,模拟望远镜在火箭发射到太空时所承受的震动。之后,它被送回加州理工学院,科学家们在那里确认其反射镜在振动测试后仍然可以完成对焦。NASA的SPHEREx将使用这些滤镜来进行光谱分析,科学家们可以用这种技术来研究物体的成分或测量物体的距离。每个滤光片(约一个饼干大小)都有多个片段,可以阻挡除一种特定波长以外的所有红外光。资料来源:NASA/JPL-CaltechSPHEREx的红外线"视觉SPHEREx望远镜内的反射镜可以收集来自遥远天体的光线,但探测器才能"看到"任务试图观测的红外线波长。像太阳这样的恒星会发出整个可见光波长范围的光,所以它是白色的(不过地球的大气层会让它在我们眼中看起来更黄一些)。三棱镜可以将这些光分成不同的波长--彩虹。这就是所谓的光谱学。SPHEREx将使用安装在探测器顶部的滤光片来进行光谱分析。每个滤光片只有饼干大小,肉眼看上去呈彩虹色,并有多个区段,可以阻挡除一种特定波长以外的所有红外光。SPHEREx观测到的每一个天体都会被每一段成像,使科学家能够看到该天体发出的特定红外波长,无论是恒星还是星系。该望远镜总共可以观测到100多种不同的波长。由此,SPHEREx将绘制出不同于以往的宇宙地图。美国宇航局的SPHEREx任务SPHEREx由喷气推进实验室(JPL)负责管理,隶属于位于华盛顿的美国宇航局科学任务局天体物理学处。BallAerospace公司建造了这台望远镜,并将提供航天器总线。SPHEREx数据的科学分析将由美国和韩国10个机构的科学家团队进行。数据将在加州理工学院的IPAC进行处理和存档。SPHEREx数据集将向公众开放。...PC版:https://www.cnbeta.com.tw/articles/soft/1397423.htm手机版:https://m.cnbeta.com.tw/view/1397423.htm

封面图片

韦伯太空望远镜揭示标志性马头星云的隐藏层次

韦伯太空望远镜揭示标志性马头星云的隐藏层次这张来自美国宇航局詹姆斯-韦伯太空望远镜的马头星云图像聚焦在马的"鬃毛"部分,宽度约为0.8光年。这是用韦伯的近红外相机(NIRCam)拍摄的。图像底部呈现蓝色的空灵云层充满了各种物质,包括氢、甲烷和水冰。延伸到主星云上方的红色缕状物代表原子氢和分子氢。在这个被称为光解离区的区域中,来自附近年轻大质量恒星的紫外线在上方完全电离的气体和下方星云之间形成了一个由气体和尘埃组成的中性温暖区域。与许多韦伯图像一样,遥远的星系散布在背景中。这张图像由波长为1.4和2.5微米(蓝色)、3.0和3.23微米(青色)、3.35微米(绿色)、4.3微米(黄色)以及4.7和4.05微米(红色)的光组成。资料来源:NASA、ESA、CSA、KarlMisselt(亚利桑那大学)、AlainAbergel(法国国家科学研究中心IAS)韦伯的观测将使天文学家能够研究星云中的尘埃是如何阻挡和发射光线的,并更好地了解星云的形状。这张图片展示了我们天空中最独特的天体之一--马头星云的三个视角。第一张图片(左)于2023年11月发布,展示了欧空局欧几里得望远镜在可见光下看到的马头星云。第二张图片(中)是美国国家航空航天局哈勃太空望远镜拍摄的马头星云的近红外照片,这张图片曾在2013年作为哈勃太空望远镜23周年纪念图片展出。这张图片揭示了通常被尘埃遮挡的美丽而精致的结构。第三张图片(右)是美国宇航局詹姆斯-韦伯太空望远镜的近红外相机(NIRCam)仪器拍摄的马头星云的新景象。资料来源:NASA、ESA、CSA、KarlMisselt(亚利桑那大学)、AlainAbergel(IAS、CNRS)、MahdiZamani欧几里得联盟、哈勃遗产项目(STScI、AURA)美国国家航空航天局(NASA)的詹姆斯-韦伯太空望远镜(JamesWebbSpaceTelescope)拍摄到了我们天空中最独特的天体之一--马头星云(HorseheadNebula)放大部分迄今为止最清晰的红外图像。这些观测数据以全新的视角展示了这个标志性星云的"马鬃"顶部或边缘,以前所未有的空间分辨率捕捉到了该区域的复杂性。韦伯的新图像显示了猎户座的部分天空,位于一个被称为猎户座B分子云的密集区域的西侧。从尘埃和气体的湍流中升起的是马头星云,又名巴纳德33,位于大约1300光年之外。星云由坍塌的星际物质云形成,由于受到附近一颗炙热恒星的照耀而发光,周围的气体云已经消散,但突出的星柱是由厚厚的物质团块组成的,因此更难被侵蚀。天文学家估计,"马头"在解体之前还有大约500万年的时间。韦伯的新视图聚焦于星云顶部独特的尘埃和气体结构的照明边缘。马头星云是一个著名的光解离区(PDR)。在这样的区域中,来自年轻大质量恒星的紫外线(UV)在大质量恒星周围完全电离的气体和恒星诞生的云层之间形成了一个大部分为中性、温暖的气体和尘埃区域。这种紫外线辐射强烈地影响着这些区域的化学性质,并成为一个重要的热源。这张来自美国宇航局詹姆斯-韦伯太空望远镜的马头星云图像聚焦于马的部分"鬃毛"。这是用韦伯的中红外仪器(MIRI)拍摄的。中红外光可以捕捉到灰尘硅酸盐和称为多环芳烃的烟灰状分子等物质的光芒。资料来源:NASA、ESA、CSA、KarlMisselt(亚利桑那大学)、AlainAbergel(法国国家科学研究中心IAS)这些区域的星际气体密度足以保持大部分中性,但密度不足以阻止大质量恒星紫外线的穿透。这种PDR发出的光为研究物理和化学过程提供了一个独特的工具,这些物理和化学过程推动了银河系星际物质的演化,也推动了从恒星形成的早期到现在的整个宇宙的演化。由于马头星云距离很近,而且其几何形状几乎处于边缘位置,因此是天文学家研究PDR的物理结构、其各自环境中气体和尘埃的分子演化以及它们之间过渡区域的理想目标。它被认为是天空中研究辐射如何与星际物质相互作用的最佳区域之一。借助韦伯望远镜的近红外成像(MIRI)和近红外成像(NIRCam)仪器,一个国际天文学家小组首次揭示了马头星受光边缘的小尺度结构。当紫外线蒸发尘埃云时,尘埃粒子被加热的气体带离尘埃云。韦伯探测到了追踪这一运动的细小特征网络。通过观测,天文学家还研究了尘埃是如何阻挡和发射光线的,并更好地了解了星云的多维形状。接下来,天文学家打算研究已经获得的光谱数据,以深入了解整个星云中观测到的物质的物理和化学特性的演变。这些观测是为韦伯GTO1192计划进行的,观测结果于4月29日发表在《天文学与天体物理学》(Astronomy&Astrophysics)杂志上。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1429294.htm手机版:https://m.cnbeta.com.tw/view/1429294.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人