詹姆斯-韦伯望远镜拍摄远在天边的星系的“宇宙海市蜃楼”

詹姆斯-韦伯望远镜拍摄远在天边的星系的“宇宙海市蜃楼”如果你关注过韦伯以前的观测,那么你就会知道,观察很远很远的星系就像是在看时间。这是因为光的传播需要时间,当星系或恒星居住在数千光年之外时,我们可以瞥见那个星系几千年前的样子。这个宇宙海市蜃楼是一个完美的例子,说明观察宇宙的时间旅行是多么的重要。这是因为欧洲航天局本月分享的这张来自韦伯的新图片,在同一张图片中展示了同一个星系团的三个不同时期。更耐人寻味的是,这三个不同的时间也是不同的时间点,使天文学家能够在三个不同的时间点上观察宇宙海市蜃楼。这张带注释的图片展示了韦伯在三个不同的时间点上采集到的瞬时AT2022的情况。图片来源。欧空局/韦伯,美国宇航局和加空局,P.Kelly在这种情况下,我们看到的通过时间镜像的星系是一个被称为AT2022riv的超新星宿主星系。这个星系离我们的星系很远,只有在被称为RXJ2129的星系团引起的引力透镜下才能看到。通过利用星系团的强大引力向宇宙深处看去,科学家们能够捕捉到宇宙海市蜃楼的身影。海市蜃楼之所以如此壮观,是因为它展示了AT2022里弗的超新星在三个不同的时间点。第一张图片展示了超新星,而第二张图片大约是在320天之后。这时,超新星已经消逝。宇宙海市蜃楼内的最后一次出现是在第一次出现后约1000天。这一现象非常壮观,因为它让我们看到了引力透镜的影响可以有多强。此外,如果我们能在其他观测中重复这种海市蜃楼般的事件,我们就能进一步检查重要的宇宙事件,给科学家提供更多的数据来解读和学习。...PC版:https://www.cnbeta.com.tw/articles/soft/1347287.htm手机版:https://m.cnbeta.com.tw/view/1347287.htm

相关推荐

封面图片

“圣诞树星系团”:韦伯望远镜和哈勃望远镜联合观测的炫目杰作

“圣诞树星系团”:韦伯望远镜和哈勃望远镜联合观测的炫目杰作MACS0416的全色视图,这是一个距离地球约43亿光年的星系团。这幅图像是通过将美国宇航局詹姆斯-韦伯太空望远镜的红外观测数据与美国宇航局哈勃太空望远镜的可见光数据相结合而生成的。由此产生的蓝色和红色棱镜全景图为星系的距离提供了线索。图片来源:NASA、ESA、CSA、STScI、JoseM.Diego(IFCA)、JordanC.J.D'Silva(UWA)、AntonM.Koekemoer(STScI)、JakeSummers(ASU)、RogierWindhorst(ASU)、HaojingYan(密苏里大学)包括德克萨斯农工大学天文学家王立凡博士在内的研究小组将这幅新图像命名为"圣诞树星系团",它结合了哈勃望远镜的可见光和韦伯望远镜探测到的红外光,展示了距离地球约43亿光年的星系团MACS0416。由于该星系团能够通过一种被称为引力透镜的现象放大来自更遥远背景星系的光线,因此研究人员能够识别出放大的超新星,甚至是放大倍数非常高的单个恒星。密苏里大学天文学家阎昊晶博士(HaojingYan)说:"我们称MACS0416为圣诞树星系团,既因为它色彩斑斓,也因为我们在其中发现了这些闪烁的灯光。"这篇论文由王立凡合著,已被接受发表在《天体物理学杂志》上。自2006年以来,王立凡一直是德克萨斯农机大学物理和天文学系以及乔治-P.和辛西娅-伍兹-米切尔基础物理和天文学研究所(GeorgeP.andCynthiaWoodsMitchellInstituteforFundamentalPhysicsandAstronomy)的成员,他是一个时域天文学团队的成员,该团队正在利用JWST发现宇宙中最早的超新星,其中最古老的记录可以追溯到宇宙诞生30多亿年的时候。这个国际合作小组被称为"用于重离子化和透镜科学的主要河外星系区域"(PEARLS),由亚利桑那州立大学天文学家罗吉尔-温德霍斯特(RogierWindhorst)博士领导。该团队的方法之一是利用韦伯望远镜无与伦比的观测能力来搜寻观测亮度随时间变化的天体,即所谓的瞬变天体。在JWST发射前发表的2017年白皮书中,王和他的合著者预测,这台望远镜将利用其强大的主成像仪--近红外相机(NIRCam)--在一次拍摄中发现几个这样的瞬变天体。他们引用MACS0416图像及其包含的14个瞬变天体作为佐证,并指出这些发现超出了研究小组的预测。"JWST正在宇宙中发现大量的瞬变天体,主要是超新星,"王说。"它不仅发现了超新星,还发现了遥远星系中被附近前景星系引力场放大的恒星。"这些发现是通过对星系团MACS0416方向的天空区域进行反复观测而获得的。北黄道极(NEP)是JWST能够全年持续指向并获取数据的区域,是未来获取时域观测数据的理想地点。前所未有的灵敏度使得一些超新星,比如白矮星爆炸产生的超新星能够在整个宇宙中被探测到,甚至可以追溯到宇宙刚刚开始形成第一批恒星的时代。"天文学有两个基本问题:第一批恒星是如何形成的,以及驱动宇宙膨胀的力量的性质是什么JWST能够发现的瞬变现象将为解决这些问题提供所需的数据。这些发现表明,JWST是研究宇宙黎明期微弱瞬变的最强大工具,宇宙黎明期是指宇宙从没有恒星的黑暗时代走到今天的时代。它观测到的超新星可以探究第一批恒星的诞生过程,以及宇宙膨胀到宇宙年龄不足10亿年的过程。"其中一些超新星很可能是低质量恒星死亡后演变成白矮星,并通过热核爆炸爆发出来的。通过透镜恒星可以研究遥远宇宙中的单个恒星。这些早期恒星也可能是质量非常大的恒星,它们通过所谓的成对生产不稳定过程产生极其明亮的瞬态。"我们预计,这些'常规可发现'的瞬变将在解决宇宙黑暗时代的结束和暗宇宙膨胀的物理学问题方面具有巨大的潜力,"王说。...PC版:https://www.cnbeta.com.tw/articles/soft/1399773.htm手机版:https://m.cnbeta.com.tw/view/1399773.htm

封面图片

詹姆斯-韦伯望远镜捕捉到宇宙黎明期诞生的星系的首批影像

詹姆斯-韦伯望远镜捕捉到宇宙黎明期诞生的星系的首批影像早期星系形成示意图韦伯望远镜拥有无比强大的红外望远镜,它可以比其他任何仪器窥探到更远的时空。它不断刷新自己的记录,观测到最遥远的恒星和星系,它离宇宙黎明越来越近了。现在,韦伯望远镜成功地看到了一些最早在这个黎明形成的星系。这架望远镜捕捉到了三个星系的图像,它们形成于132亿年前到134亿年前,也就是宇宙大爆炸后4到6亿年之间。"可以说,这些是我们所见过的第一批星系形成的'直接'图像,"该研究的第一作者卡斯帕-埃尔姆-海因茨(KasperElmHeintz)说。"詹姆斯-韦伯号之前向我们展示的是处于演化后期的早期星系,而在这里,我们见证了它们的诞生,从而也见证了宇宙中第一批恒星系统的构建。"下面是一些图片,通过望远镜仪器上的多个滤镜展示了一个星系。詹姆斯-韦伯通过不同滤光片拍摄的其中一个星系的图像KasperE.Heintzetal.我们知道,对于未经专业训练的人来说,这些图像并不令人印象深刻,但这些模糊的光团是詹姆斯-韦伯迄今为止拍摄到的最重要的图像之一。在宇宙的早期阶段,宇宙是一个非常黑暗、寒冷的地方,到处都是不透明的氢气,没有其他什么东西。最终,物质开始聚集在足够大的口袋里,在宇宙大爆炸后大约1.8亿年诞生了第一代恒星。这种新的光和能量开始与氢相互作用,使其电离和扩散。不久之后,这些早期恒星开始聚集成第一批星系--从宇宙尺度上说是"不久",也就是大约1.2亿年到2.2亿年之后。这些星系被认为是在氢气的哺育下开始形成自己的新恒星。而这正是新图像所捕捉到的。詹姆斯-韦伯极其灵敏的红外光谱仪能够测量出星系发出的光线是如何被星系内部和周围的中性氢气吸收的。这些信号表明,氢气正在涌入这些小星系,为新的小恒星提供能量,正如现有模型所预测的那样。这项研究的作者加布里埃尔-布拉莫尔(GabrielBrammer)说:"我们人类一直在问的一个最基本的问题是:'我们从哪里来?在这里,我们通过揭示宇宙中一些最初的结构产生的时刻,拼凑出了更多的答案。这是一个我们将进一步研究的过程,直到我们有希望拼凑出更多的拼图碎片。"这项研究发表在《科学》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1432210.htm手机版:https://m.cnbeta.com.tw/view/1432210.htm

封面图片

韦伯望远镜让早期宇宙中的已发现超新星数量增加10倍

韦伯望远镜让早期宇宙中的已发现超新星数量增加10倍韦伯望远镜非常适合用来识别极其遥远的超新星,因为存在一种叫做宇宙学红移的现象,在这种现象中,穿越宇宙的光线会被拉伸到更长的波长。来自远古超新星的可见光被拉伸得如此之长,以至于最终出现在红外线中。韦伯望远镜的仪器可以看到红外光,因此非常适合寻找这些遥远的超新星。一个研究小组利用韦伯早期宇宙深度探测的数据,发现了比以前已知的多10倍的远古超新星。这项研究是利用韦伯望远镜对远古超新星进行更广泛探测的第一步。JADES深度场使用的是NASA詹姆斯-韦伯太空望远镜(JWST)的观测数据,这是JADES(JWST高级河外星系深度巡天)计划的一部分。一个研究JADES数据的天文学家小组发现了大约80个亮度随时间变化的天体(绿色圈内)。这些被称为瞬变天体的天体大多是恒星或超新星爆炸的结果。资料来源:NASA、ESA、CSA、STScI、JADES合作组织美国国家航空航天局(NASA)的詹姆斯-韦伯太空望远镜(JamesWebbSpaceTelescope)深入窥探宇宙,为科学家们首次提供了宇宙早期超新星的详细资料。一个使用韦伯数据的研究小组发现,早期宇宙中的超新星比之前已知的多10倍。其中一些新发现的爆炸恒星是同类恒星中最遥远的例子,包括那些用来测量宇宙膨胀率的恒星。"韦伯望远镜是一台发现超新星的机器,"图森市亚利桑那大学斯图尔特天文台的三年级研究生克里斯塔-德库西(ChristaDeCoursey)说。"探测到的超新星数量之多,加上这些超新星的距离之远,是我们巡天观测中最令人兴奋的两项成果"。德库西在威斯康星州麦迪逊举行的美国天文学会第244次会议的新闻发布会上介绍了这些发现。资料来源:NASA、ESA、CSA、AnnFeild(STScI)为了取得这些发现,研究小组分析了作为JWST高级深河外星系巡天(JADES)计划一部分而获得的成像数据。韦伯望远镜非常适合寻找极其遥远的超新星,因为它们的光线会被拉伸到更长的波长--这种现象被称为宇宙学红移。(见上图)。在韦伯望远镜发射之前,只有少数超新星的红移超过2,这相当于宇宙的年龄只有33亿年--仅为目前年龄的25%。JADES样本包含了许多在更久远的过去爆炸的超新星,当时宇宙的年龄还不到20亿年。以前,研究人员利用美国宇航局的哈勃太空望远镜观测宇宙处于"青年期"时的超新星。通过JADES,科学家们看到了宇宙处于"十几岁"或"前十几岁"时的超新星。未来,他们希望能够回望宇宙的"幼儿"或"婴儿"阶段。为了发现这些超新星,研究小组比较了相隔一年的多幅图像,寻找在这些图像中消失或出现的光源。这些观测亮度随时间变化的天体被称为瞬变体,而超新星就是瞬变体的一种。总之,JADES瞬变巡天样本小组在一片只有米粒粗细的天空中发现了大约80个超新星。这张马赛克照片展示了从JADES(JWST高级深河外星系巡天)计划的数据中发现的约80个瞬变天体(即亮度不断变化的天体)中的三个。大多数瞬变体都是恒星或超新星爆炸的结果。通过对比2022年和2023年拍摄的图像,天文学家可以找到从我们的视角来看最近才爆炸的超新星(如前两列所示的例子),或者已经爆炸但其光线正在逐渐消失的超新星(第三列)。每颗超新星的年龄都可以通过它的红移(用"z"表示)来确定。最遥远的超新星的红移为3.8,它的光起源于宇宙只有17亿年的时候。红移2.845相当于宇宙大爆炸后23亿年。最接近的例子红移为0.655,显示的是大约60亿年前离开其星系的光线,当时宇宙的年龄刚刚超过现在的一半。资料来源:NASA、ESA、CSA、STScI、ChristaDeCoursey(亚利桑那大学)、JADES合作组织位于马里兰州巴尔的摩市的太空望远镜科学研究所(STScI)的美国宇航局爱因斯坦研究员贾斯汀-皮埃尔(JustinPierel)说:"这确实是我们对高红移宇宙的瞬态科学的第一个样本。我们正试图确定遥远的超新星是否与我们在附近宇宙中看到的超新星有本质区别或非常相似。"皮埃尔和STScI的其他研究人员提供了专家分析,以确定哪些瞬变实际上是超新星,哪些不是,因为它们往往看起来非常相似。研究小组发现了一些高红移超新星,包括光谱学上确认的最远的一颗,红移为3.6。它的祖星在宇宙只有18亿岁时爆炸。这是一颗所谓的核心坍缩超新星,是一颗大质量恒星的爆炸。这段动画展示了白矮星爆炸的过程,白矮星是一颗恒星的残余物,密度极高,其核心已无法再燃烧核燃料。在这颗"Ia型"超新星中,白矮星的引力从附近的恒星伴星那里偷走了物质。当白矮星的质量估计达到目前太阳质量的1.4倍时,它再也无法承受自身的重量,于是爆炸了。资料来源:NASA/JPL-Caltech天体物理学家特别感兴趣的是Ia型超新星。(这些爆炸的恒星非常明亮,可以用来测量遥远的宇宙距离,帮助科学家计算宇宙的膨胀率。研究小组至少发现了一颗红移为2.9的Ia型超新星。这颗爆炸产生的光在115亿年前开始向我们传播,当时宇宙的年龄只有23亿年。此前经光谱学确认的Ia型超新星的距离记录是红移1.95,当时宇宙的年龄是34亿年。科学家们迫切希望分析高红移下的Ia型超新星,看看它们是否都具有相同的内在亮度,而与距离无关。这一点至关重要,因为如果它们的亮度随红移而变化,那么它们就不能成为测量宇宙膨胀率的可靠标记。Pierel分析了这颗发现于红移2.9的Ia型超新星,以确定其内在亮度是否与预期不同。虽然这只是第一个这样的天体,但结果表明没有证据表明Ia型亮度会随红移而变化。我们还需要更多的数据,但现在,基于Ia型超新星的宇宙膨胀率理论及其最终命运仍然保持不变。皮埃尔还在美国天文学会第244次会议上介绍了他的研究成果。早期宇宙的环境与现在截然不同。科学家们期望看到来自恒星的古老超新星,这些恒星所含的重化学元素远远少于太阳这样的恒星。将这些超新星与本地宇宙中的超新星进行比较,将有助于天体物理学家了解早期恒星的形成和超新星的爆发机制。STScI研究员马修-西伯特(MatthewSiebert)说:"我们基本上为瞬变宇宙打开了一扇新窗口。从历史上看,每当我们这样做的时候,我们都会发现一些极其令人兴奋的东西--一些我们意想不到的东西。"JADES团队成员、亚利桑那大学图森分校研究教授EiichiEgami说:"由于韦伯望远镜非常灵敏,它几乎能在其指向的所有地方发现超新星和其他瞬变体。这是利用韦伯望远镜对超新星进行更广泛观测的重要第一步。"编译自:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1434348.htm手机版:https://m.cnbeta.com.tw/view/1434348.htm

封面图片

詹姆斯·韦伯望远镜正观察附近螺旋星系的心脏深处

詹姆斯·韦伯望远镜正观察附近螺旋星系的心脏深处由于韦伯的红外成像工具,这些图像提供了对被观测星系核心的前所未有的观察细节。美国宇航局宣布,这些数据帮助推动了21篇初始论文的收集,以便对我们宇宙中发现的一些最小规模的过程提供更多的洞察力。随着韦伯对恒星形成的深入研究,科学家们希望能够更多地了解宇宙是如何演变的。这项研究是对附近星系的最大调查,目前正由近距离星系高角度分辨率物理学(PHANGS)合作进行。该团队由100多名研究人员组成。到目前为止,研究人员已经设法用韦伯捕获了一个数据宝库,这将有助于澄清早期恒星形成是如何发生的。詹姆斯-韦伯的恒星形成观测图片来源:美国宇航局、欧空局、加空局、加拿大国家科学院。NASA,ESA,CSA,andJ.Lee(NOIRLab).图像处理。A.Pagan(STSCI)"PHANGS团队的成员ErikRosolowsky在一份声明中说:"我们直接看到年轻恒星形成的能量是如何影响它们周围的气体的,这真是太了不起了。该团队目前正在观察位于我们自己附近的总共19个螺旋星系。韦伯提供的高分辨率图像使研究人员能够穿过气体和尘埃,进入星系的中心。这是一项史无前例的观测调查,毫无疑问,它将有助于改写我们认为对恒星形成的最早过程的认识。不过,有了这些知识,我们就可以用这些小过程来解释更大的过程,比如星系本身是如何形成的--我们已经对这个问题有了一点了解。...PC版:https://www.cnbeta.com.tw/articles/soft/1345515.htm手机版:https://m.cnbeta.com.tw/view/1345515.htm

封面图片

詹姆斯·韦伯望远镜在遥远的宇宙中发现"不可能的巨大星系"

詹姆斯·韦伯望远镜在遥远的宇宙中发现"不可能的巨大星系"由于真空中的光速是恒定的,我们观察太空中的物体是有时间延迟的。太阳在八光分之外,所以我们看到的是它八分钟前的样子。下一个最近的恒星,半人马座阿尔法星,大约在4光年之外,所以我们对它的观察比计划晚了4年。如果你将这一原则延伸到空间的最深处,你就可以从字面上看过去几十亿年的时间,一窥星系在宇宙的寿命中是如何演变的。随着詹姆斯-韦伯太空望远镜的空前强大,我们现在可以比以往任何时候都更接近时间的起点,看到更清晰的细节。也许毫不奇怪,这意味着我们不断发现与我们目前对早期宇宙的理解相悖的东西。最近对詹姆斯-韦伯数据的研究显示,棒状螺旋星系--那些像我们自己的银河系一样具有先进结构的星系存在的时间比想象的要早几十亿年。现在,该望远镜又发现了新的景象,根据我们目前的模型,这些景象应该是不可能的。由澳大利亚斯威本科技大学领导的一个天文学家小组已经观察到了六个星系,它们的质量远远超过了人们对其时代的想象。事实上,它们的质量比当时认为的整个宇宙的质量还要大。詹姆斯-韦伯关于六个新发现的大质量星系的图像斯威本科技大学"我们发现的这六个星系有120多亿年的历史,在大爆炸之后只有5到7亿年,其大小达到我们太阳质量的1000亿倍,这项研究的首席研究员IvoLabbé说。"这太大了,甚至在目前的模型中都不存在。这一发现可以改变我们对宇宙中最早的星系如何形成的理解。"这些测量结果仍然需要通过进一步的观察来跟进,以确认其质量和它的位置。该团队说,其他的解释仍然是可能的,但是这些解释本身仍然可能产生全新的发现。Labbé说:"一个同样令人着迷的选择是,其中一些物体属于一类新出现的超大质量黑洞,以前从未见过。"无论哪种方式,看起来我们对宇宙的理解将需要一些修正。这项研究发表在《自然》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1345875.htm手机版:https://m.cnbeta.com.tw/view/1345875.htm

封面图片

詹姆斯·韦伯太空望远镜首次揭示出在早期星系附近隐藏的伴星系

詹姆斯·韦伯太空望远镜首次揭示出在早期星系附近隐藏的伴星系研究人员能够确定,这两个星系与地球的距离大致相同,并且处于同一邻域,这表明它们可能会相互作用并可能合并。这些星系的成熟金属性使科学家们推测,恒星的形成一定是非常有效的,并且在宇宙中很早就开始了。在扫描美国宇航局詹姆斯-韦伯太空望远镜(JWST)拍摄的一个著名的早期星系的首批图像时,康奈尔大学的天文学家们很感兴趣地看到了靠近其外缘的一个光团。他们最初的关注点以及红外观测站的目标是SPT0418-47,这是早期宇宙中最明亮的尘埃、恒星形成的星系之一,其远处的光线被一个前景星系的引力弯曲并放大成一个圆,称为爱因斯坦环。但是,对去年秋天发布的早期JWST数据的深入研究产生了一个偶然的发现:一个以前隐藏在前景星系光线后面的伴生星系,尽管它的年龄很小,估计为14亿年,但令人惊讶的是,它似乎已经承载了多代恒星。詹姆斯-韦伯太空望远镜的艺术画。来源:美国国家航空航天局康奈尔大学天体物理学和行星科学中心(CCAPS)的副研究员、论文第二作者AmitVishwas博士说,智利阿塔卡马大型毫米/亚毫米阵列(ALMA)拍摄的同一爱因斯坦环的早期图像含有被JSWT清晰解析的伴星的暗示,但它们不能被解释为除了随机噪音以外的东西。通过调查JWST的NIRSpec仪器所拍摄的图像中每个像素的光谱数据,研究人员Peng发现了环内的第二个新光源。他确定这两个新的光源是一个新星系的图像,它被负责创造环的同一个前景星系所引力,尽管它们的亮度要低8到16倍--这证明了JWST红外视觉的强大。对光的化学成分的进一步分析证实,来自氢、氮和硫原子的强发射线显示了类似的红移--这是衡量一个星系的光在越来越远的情况下延伸到更长、更红的波长的一个标准。这使得这两个星系与地球的距离大致相同--计算出的红移约为4.2,或约为宇宙年龄的10%--并且处于同一附近。为了验证他们的发现,研究人员回到了早期的ALMA观测。他们发现一条电离碳的发射线与JWST观测到的红移密切相关。Vishwas说:"我们有几条发射线的移位完全相同,所以毫无疑问,这个新星系就是我们认为的地方。"研究小组估计,这个被他们命名为SPT0418-SE的伴生星系在环的50千秒差距(Parszek)以内(秒差距是一个宇宙距离尺度,用以测量太阳系以外天体的长度单位。1秒差距约为3.26光年、206,000天文单位或31兆公里),这种级别的接近表明,这些星系必然会相互影响,甚至可能合并,这种观察增加了人们对早期星系如何演变为更大星系的理解。作为早期宇宙中的星系,这两个星系的质量并不高,其中"SE"相对较小,尘埃较少,这使得它看起来比极度被尘埃遮挡的环更蓝。根据附近具有类似颜色的星系的图像,研究人员认为它们可能居住在"一个具有尚未被发现的邻居的大规模暗物质晕中"。考虑到这些星系的年龄和质量,最令人惊讶的是它们的成熟金属性--比氦和氢更重的元素的数量,如碳、氧和氮--该小组估计与我们的太阳相似。与太阳相比,它大约有40亿年的历史,并且从前几代恒星那里继承了大部分金属,这些恒星大约有80亿年的时间来建立它们,我们是在宇宙不到15亿年的时候观察这些星系。研究人员已经提交了一份关于JWST观测时间的提案,以继续研究该星环及其伴星,并调和光学和远红外光谱之间观察到的潜在差异。...PC版:https://www.cnbeta.com.tw/articles/soft/1355239.htm手机版:https://m.cnbeta.com.tw/view/1355239.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人