揭开层状材料中水-离子相互作用的秘密

揭开层状材料中水-离子相互作用的秘密封闭的纳米空间的图像,其中水分子围绕着离子的结构。资料来源:艺术行动公司,福井高哉这些发现最近发表在《自然通讯》杂志上。许多材料在微观或纳米尺度上采取分层形式。例如,当干燥时,粘土类似于一系列相互堆叠的薄片。然而,当这种分层材料遇到水时,水可以被限制并融入层与层之间的缝隙或孔中,或者更准确地说,是"孔"。当水分子或其组成元素,特别是氢氧根离子(一种由单个氧原子和单个氢原子组成的带负电荷的离子)被整合到材料的结晶结构中时,也会发生这种"水化"。这种类型的材料,即"水合物",不一定是"湿"的,即使水现在是它的一部分。水合作用也可以大大改变原始材料的结构和特性。在这种"纳米细化"中,水化结构--水分子或其组成元素的排列方式--决定了原始材料储存离子(带正电或负电的原子或原子组)的能力。这种水或电荷的储存意味着这种层状材料,从传统的粘土到层状金属氧化物,以及关键的是它们与水的相互作用,具有广泛的应用,从水净化到能源储存。然而,研究这种水合结构和这种层状材料的离子储存机制中的离子配置之间的相互作用已被证明是一个巨大的挑战。而分析这些水合结构在这些离子的任何运动过程中如何变化('离子传输')的努力则更加困难。(a)具有不同宿主电荷密度的层状材料中的层间结构示意图。在层间空间中,水分子被纳入未被电荷补偿离子填充的宿主电荷的孔隙中。(b)具有能量耗散监测功能的石英晶体微天平(QCM-D)在具有不同宿主电荷密度的LDH中的离子交换反应曲线,显示了频率(Δf)和耗散(ΔD)的变化。资料来源:修改自TomohitoSudare等人,NatCommun(2022)13,6448。最近的研究表明,这种水的结构和与层状材料的相互作用在赋予后者高的离子存储能力方面起着重要作用,所有这些反过来又取决于承载水的层的灵活性如何。在层与层之间的空间里,任何没有被离子填充的孔隙都会被水分子填充,从而帮助稳定层状结构。该研究的通讯作者、信州大学超材料研究计划的材料化学家KatsuyaTeshima说:"换句话说,水结构对层间离子的结构很敏感。而在许多不同的晶体结构中,这种离子配置控制着可以储存多少离子,但直到现在这种配置还很少被系统地研究。"因此,手岛的研究小组寻求"具有能量耗散监测功能的石英晶体微天平"(QCM-D)来帮助他们进行理论计算。QCM-D本质上是一种像天平秤一样工作的仪器,可以在纳米水平上测量极其微小的质量和分子相互作用。该技术还可以测量能量损失的微小变化。研究人员利用QCM-D首次证明了可以通过实验观察到限制在层状材料纳米空间内的水分子结构的变化。他们通过测量材料的"硬度"来做到这一点。他们调查了一类带负电的粘土的层状双氢氧化物(LDH)。他们发现,当任何离子交换反应发生时,水合结构与LDHs的硬化有关(一种离子与另一种离子的交换,但有相同的变化)。"换句话说,离子相互作用的任何变化都起源于离子融入纳米空间时发生的水化结构的变化,"该研究的合作者、现在东京大学的苏达雷(TomohitoSudare)补充说。此外,研究人员发现,水合结构高度依赖于层状材料的电荷密度(每单位体积的电荷量)。这反过来又在很大程度上制约着离子存储能力。研究人员现在希望将这些测量方法与离子的水合结构知识结合起来,设计出新的技术来提高层状材料的离子存储能力,从而有可能为离子分离和可持续能源存储开辟新的途径。...PC版:https://www.cnbeta.com.tw/articles/soft/1348163.htm手机版:https://m.cnbeta.com.tw/view/1348163.htm

相关推荐

封面图片

开创性的实验方法揭开了二维材料中自旋结构的秘密

开创性的实验方法揭开了二维材料中自旋结构的秘密研究人员发现了一种新的实验技术来研究二维量子材料中的电子自旋特性,克服了一个长期的挑战,并有可能使基于这些材料的先进计算和通信技术得到发展。资料来源:李佳/布朗大学阻碍科学家们测量电子自旋的典型方法--一种使物理宇宙中的一切具有结构的基本行为--通常在二维材料中不起作用。这使得充分了解这些材料并推动基于它们的技术进步变得异常困难。但是由布朗大学研究人员领导的一个科学家团队认为他们现在有办法解决这一长期的挑战。他们在5月11日发表在《自然-物理》杂志上的一项新研究中描述了他们的解决方案。在这项研究中,该团队--其中还包括来自桑迪亚国家实验室综合纳米技术中心和因斯布鲁克大学的科学家--描述了他们认为是第一次显示二维材料中旋转的电子与来自微波辐射的光子之间直接互动的测量。据研究人员称,电子对微波光子的吸收被称为耦合,它建立了一种新的实验技术,用于直接研究电子在这些二维量子材料中如何旋转的特性--这种技术可以作为开发基于这些材料的计算和通信技术的基础。"自旋结构是量子现象中最重要的部分,但我们从来没有真正在这些二维材料中直接探测过它,"布朗大学物理学助理教授、该研究的资深作者李佳说。"这一挑战使我们在过去20年里无法从理论上研究这些迷人的材料中的自旋。我们现在可以用这种方法来研究很多以前无法研究的不同系统。"研究人员在一种相对较新的二维材料上进行了测量,这种材料被称为"魔角"扭曲双层石墨烯。这种基于石墨烯的材料是在两片超薄的碳层堆叠并扭曲到恰到好处的角度时产生的,将新的双层结构转化为一种超导体,使电力流动没有阻力或能量浪费。2018年刚刚发现,研究人员专注于这种材料,因为围绕它的潜力和神秘感。"2018年提出的很多重大问题仍未得到解答,"领导这项工作的布朗大学Li实验室的研究生ErinMorissette说。物理学家通常使用核磁共振或NMR来测量电子的自旋。他们通过使用微波辐射激发样品材料的核磁特性,然后读取这种辐射引起的不同特征来测量自旋。二维材料所面临的挑战是,电子对微波激发的磁性特征太小,无法检测。该研究小组决定随机应变。他们没有直接检测电子的磁化,而是使用布朗大学分子和纳米创新研究所制造的设备测量电子电阻的细微变化,这些变化是由辐射的磁化变化引起的。电子电流流动的这些细微变化使研究人员能够使用该设备检测电子正在吸收微波辐射的照片。研究人员能够从实验中观察到新的信息。例如,研究小组注意到,光子和电子之间的相互作用使该系统某些部分的电子表现得像在反铁磁系统中一样--这意味着一些原子的磁性被一组以相反方向排列的磁性原子所抵消了。研究二维材料中自旋的新方法和目前的发现不会适用于今天的技术,但研究小组看到了该方法在未来可能导致的潜在应用。他们计划继续将他们的方法应用于扭曲的双层石墨烯,但也将其扩展到其他二维材料。Morissette说:"这是一个真正多样化的工具集,我们可以用它来获取这些强相关系统中电子秩序的一个重要部分,并在总体上理解电子在二维材料中的行为。"...PC版:https://www.cnbeta.com.tw/articles/soft/1360033.htm手机版:https://m.cnbeta.com.tw/view/1360033.htm

封面图片

中微子-光子相互作用:科学家揭开粒子物理学的神秘面纱

中微子-光子相互作用:科学家揭开粒子物理学的神秘面纱石川说:"我们的研究成果对于理解一些最基本的物质粒子的量子力学相互作用非常重要。它们还可能有助于揭示太阳和其他恒星中目前鲜为人知的现象的细节"。中微子是最神秘的基本物质粒子之一。由于中微子几乎不与其他粒子发生任何相互作用,因此极难对其进行研究。它们呈电中性,几乎没有质量。然而,它们的数量却非常丰富,大量的中微子不断从太阳中流出,穿过地球,甚至穿过我们自己,却几乎没有任何影响。了解更多有关中微子的信息,对于检验和完善我们目前对粒子物理学(即标准模型)的理解非常重要。日全食,日冕清晰可见。"在正常的'经典'条件下,中微子不会与光子发生相互作用,"石川解释说,"然而,我们已经揭示了中微子和光子如何能够在极大规模的均匀磁场中发生相互作用--大到103千米--这种磁场出现在恒星周围被称为等离子体的物质形态中。等离子体是一种电离气体,这意味着它的所有原子都获得了或多或少的电子,使它们成为带负电或正电的离子,而不是地球上日常条件下可能出现的中性原子。"弱电霍尔效应及其影响研究人员所描述的相互作用涉及到一种名为"电弱霍尔效应"的理论现象。这是电与磁在极端条件下的相互作用,自然界的两种基本力--电磁力和弱作用力--在此融合为弱电。这是一个理论概念,预计只适用于早期宇宙的极高能条件或粒子加速器的碰撞中。研究得出了这种意想不到的中微子-光子相互作用的数学描述,即拉格朗日。它描述了有关该系统能量状态的所有已知信息。石川健三,该研究的第一作者和通讯作者。图片来源:SohailKeeganPinto石川说:"除了有助于我们理解基础物理学之外,我们的研究还可能有助于解释日冕加热之谜。这是一个由来已久的谜团,它涉及太阳最外层大气--日冕--的温度远高于太阳表面温度的机制。我们的工作表明,中微子和光子之间的相互作用释放出能量,使日冕升温"。石川在总结发言中表达了他们团队的愿望:"我们现在希望继续我们的工作,寻找更深入的见解,特别是在这些极端条件下中微子和光子之间的能量转移"。...PC版:https://www.cnbeta.com.tw/articles/soft/1383901.htm手机版:https://m.cnbeta.com.tw/view/1383901.htm

封面图片

研究人员创造出一种新型的量子材料 拥有戏剧性的鱼骨状扭曲

研究人员创造出一种新型的量子材料拥有戏剧性的鱼骨状扭曲这幅插图显示了一种新的量子材料的各层之间的电子拉锯战是如何将其原子晶格扭曲成一个戏剧性的鱼骨状图案的。创建这种材料的SLAC和斯坦福大学的科学家们刚刚开始探索这种"巨大"的扭曲是如何影响材料的特性的。"这是一个非常基本的结果,所以很难对它可能或不可能产生的东西作出预测,但可能性是令人兴奋的,"SLAC/斯坦福大学教授和SIMES主任HaroldHwang说。"根据我们团队成员的理论建模,看起来这种新材料具有耐人寻味的磁性、轨道和电荷秩序特性,我们计划进一步研究。这些正是科学家们认为赋予量子材料惊人特性的一些属性。该研究小组在《自然》杂志上发表的一篇论文中描述了他们的工作。在SLAC和斯坦福大学的实验中,研究人员改变了左图材料的原子结构,该材料由八面体和四面体层组成,被称为布朗米勒石,通过化学方法去除氧气层,就像玩Jenga的人小心翼翼地从一堆木块中去除一样。由此产生的材料(右图)被Jahn-Teller效应引起的层间电子拉锯战极大地扭曲成人字形图案。资料来源:WooJinKim/SIMES人字形图案的材料是首次在具有平坦的平面晶格的分层材料中展示了一种叫做Jahn-Teller(JT)效应的东西,就像一栋具有均匀间隔的楼层的高层建筑。JT效应解决了电子在接近离子时面临的困境--一个缺少一个或多个电子的原子。就像一个在地面上滚动的球会在一个低洼处停下并定居一样,电子会寻找并占据原子电子轨道中能量最低的空位。但有时会有两个能量同样低的空位。那怎么办呢?如果该离子在一个分子中或嵌入一个晶体中,JT效应会扭曲周围的原子晶格,从而只留下一个最低能量状态的空位,解决电子的问题。而当整个晶格由JT离子组成时,在某些情况下,整个晶体结构会发生扭曲,因此电子的困境在所有离子中得到了合作解决。这就是这项研究中发生的情况。插图显示了一种新的量子材料的扭曲,这种扭曲是由带负电的钴离子和带正电的钙离子之间的电子拉锯战产生的。在所谓的Jahn-Teller效应中,每个钴离子试图将钙离子从它上面和下面的层中拉出来,使原子晶格按照箭头的方向扭曲,这是以前没有见过的方式。资料来源:WooJinKim/SIMES"Jahn-Teller效应在电子之间以及电子和晶格之间产生了强烈的相互作用,"Hwang说。"这被认为在一些量子材料的物理学中起着关键作用。"JT效应已经被证明适用于单分子和由八面体或四面体结构排列的离子组成的三维晶体材料。事实上,基于锰或铜的JT氧化物表现出巨大的磁阻和高温超导性--导致科学家们想知道在基于其他元素或具有不同结构的材料中会发生什么。在这项研究中,SIMES的研究人员将一种由钴、钙和氧(CaCoO2.5)组成的材料(它具有不同的八面体和四面体层的堆叠,被称为布朗米勒石)变成了一种层状材料(CaCoO2),在这种材料中可以产生JT效应。他们用几年前在SIMES开发的化学技巧做到了这一点,制成了第一个氧化镍超导体。Kim合成了一层棕米勒石薄膜,并通过化学方法从其晶格中移除单层氧原子,就像玩家小心翼翼地从Jenga塔中移除积木一样。晶格坍塌并沉淀为一个平坦的平面结构,其中交替含有带负电荷的钴离子(JT离子)和带正电荷的钙离子。每个钴离子都试图从它上面和下面的层中拉出钙离子。他说:"相邻层之间的这种拉锯战导致了一种美丽的扭曲模式,它反映了发挥作用的力量之间的最佳和最和谐的妥协。而且与其他材料相比,所产生的晶格扭曲是巨大的--相当于晶格中离子之间距离的25%。"Hwang说,研究小组将用SLAC和其他地方现有的X射线工具来探索这种显著的新电子配置。他说:"我们也想知道,如果我们能给这种材料掺入兴奋剂--用其他原子替换一些原子,以改变可自由移动的电子数量,会发生什么。这有许多令人兴奋的可能性"。...PC版:https://www.cnbeta.com.tw/articles/soft/1352353.htm手机版:https://m.cnbeta.com.tw/view/1352353.htm

封面图片

时空涟漪 - 科学家揭开引力波之间相互作用的秘密

时空涟漪-科学家揭开引力波之间相互作用的秘密当两个黑洞相撞时,其冲击力是如此之大,以至于我们在地球上都能探测到。这些天体是如此巨大,以至于它们的碰撞会在时空本身产生涟漪。科学家称这些涟漪为引力波。虽然爱因斯坦早在1916年就预言了引力波的概念,但物理学家直到2015年才在LIGO(激光干涉引力波天文台)上直接探测到引力波。现在,在能源部科学办公室和其他几个联邦机构的支持下,科学家们正在努力更好地理解这些引力波,以及它们能告诉我们有关黑洞的信息。除了威力巨大之外,这些碰撞还具有令人难以置信的复杂物理特性。为了准确,对它们的计算机模拟也必须非常复杂。模拟需要包括碰撞过程中的每一个步骤:黑洞相互螺旋上升、合并、变成一个扭曲的黑洞,然后沉降为一个单一的黑洞。这个过程非常复杂,科学家需要超级计算机来运行模拟。这张照片来自"模拟极端时空"(SimulatingeXtremeSpacetimes,简称SXS)合作项目利用超级计算机进行的模拟,照片中两个黑洞即将合并。当黑洞旋转在一起时,它们会在空间和时间上产生被称为引力波的涟漪。图片来源:SXSLensing/SimulatingeXtremeSpacetimesCollaboration然后,物理学家将这些模拟的数值数据与这一过程的模型进行比较。旧版本的模型显示引力波不会相互影响或相互作用。然而,科学家们怀疑这并不准确。试想一下,两个人相邻站在一个水池里制造引力波。如果每个人发出的波都非常小,那么这些波就有可能互不干扰。它们在相互影响之前就会消失。但是,如果两个人都在制造大波浪,波浪就会相互碰撞,产生新的波浪。科学家们知道碰撞会产生强烈的引力波,因此认为它们会相互影响--只是没有显示出来而已。来自加州理工学院(Caltech)、哥伦比亚大学、密西西比大学、康奈尔大学和马克斯-普朗克引力物理研究所的一个研究小组对这些数值输出进行了新的、更详细的分析。分析结果表明,引力波之间存在相互作用。每个波都会导致其他波发生轻微变化。相互作用产生了具有各自独立频率的新型波。这些新的波比原来的波更小、更混乱、更不可预测。通过在模型中加入这一特征,科学家们可以更准确地描述数值输出告诉他们的信息。LIGO利文斯顿实验室。资料来源:LIGO实验室在黑洞碰撞模型中加入这些相互作用将使模型更加精确。反过来,这些模型将帮助我们更好地解释真实世界的观测结果。模型越精确,对解读来自LIGO的数据就越有用。此外,更好的模型还能帮助科学家弄清广义相对论是否是解释黑洞实际情况的正确理论。虽然广义相对论--爱因斯坦提出的著名理论广泛地解释了引力如何影响时空,但这一理论在多大程度上适用于黑洞的奇特性质仍有待确定。黑洞碰撞距离地球和我们的日常生活遥远得难以想象。虽然我们无法亲身感受到引力波,但科学家们获得的数据和建立的模型每天都在扩展我们对这些不可思议现象的认识。...PC版:https://www.cnbeta.com.tw/articles/soft/1389973.htm手机版:https://m.cnbeta.com.tw/view/1389973.htm

封面图片

新研发的CSRD材料局部无序技术有望缩短电池充电时间 增加能量储存能力

新研发的CSRD材料局部无序技术有望缩短电池充电时间增加能量储存能力不稳定的电极充电电池是能源转型的关键要素,尤其是在可再生能源越来越多的今天。在多种可充电电池中,锂离子电池是功能最强大、应用最广泛的电池之一。为了使其电气连接,通常使用层状氧化物作为电极。然而,当电池充电时,它们的原子结构会变得不稳定。这最终会影响电池的循环寿命。局部失调为了解决这个问题,代尔夫特理工大学的"电化学能量存储"小组与国际研究人员合作。论文的第一作者是王启迪,他介绍说:"用作锂离子电池阴极材料的层状氧化物是整齐有序的。我们进行了一项结构设计研究,通过改进合成方法在这种材料中引入化学短程无序。因此,它在电池使用过程中变得更加稳定"。有序的层状结构是锂(Li)离子阴极的重要组成部分。然而,在充电过程中,本质上脆弱的缺锂框架很容易受到晶格应变、结构和/或化学机械退化的影响,导致容量迅速下降,从而缩短电池寿命。在此,研究人员报告了一种通过在氧化物阴极中整合化学短程无序(CSRD)来解决这些问题的方法,它涉及晶格中元素在空间维度上的局部分布,跨越几个最近邻间距。这是在结构化学基本原理的指导下,通过改进的陶瓷合成工艺实现的。为了证明其可行性,研究人员展示了CSRD的引入如何对层状氧化锂钴阴极的晶体结构产生重大影响。这表现在过渡金属环境及其与氧气的相互作用上,有效防止了锂去除过程中晶体板的有害滑动和结构退化。同时,它还会影响电子结构,从而提高电子导电性。这些特性对锂离子存储能力大有裨益,可显著提高循环寿命和速率能力。此外他们还发现CSRD可以通过改进化学共掺杂的方式引入到其他层状氧化物材料中,这进一步说明了CSRD在增强结构和电化学稳定性方面的潜力。这些发现为氧化物阴极的设计开辟了新的途径,帮助深入了解了CSRD对先进功能材料晶体和电子结构的影响。经过200次充电/放电循环后,结构稳定性的提高几乎使电池的容量保持率翻了一番。图片来源:RoyBorghoutsFotografie循环寿命更长,充电时间更短结构稳定性的提高使电池在200次充电/放电循环后的容量保持率几乎翻了一番。此外,这种化学短程无序增加了电极中的电荷转移,从而缩短了充电时间。研究小组对锂钴氧化物(LiCoO2)和锂镍锰钴氧化物(NMC811)等成熟的商用阴极展示了这些优势。关键材料这些成果可能会催生新一代锂离子电池,其制造成本更低,寿命期间单位能量储存的二氧化碳排放量更小。研究小组下一步将研究是否可以利用同样的材料设计原理,用不太稀缺的原材料制造阴极。论文的资深作者马尼克斯-瓦格马克(MarnixWagemaker)说:"钴和镍都是所谓的能源技术关键材料,减少电池中这些材料的使用将是一件好事。"编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1430486.htm手机版:https://m.cnbeta.com.tw/view/1430486.htm

封面图片

生物如何产生像贝壳一样的矿物质?科学家揭开矿化的秘密

生物如何产生像贝壳一样的矿物质?科学家揭开矿化的秘密研究人员一致认为,非晶中间体,如无定形碳酸钙(ACC),在生物矿化过程中起着至关重要的作用。例如,龙虾和其他甲壳类动物会在胃里储存一定量的无定形碳酸钙,在蜕皮后用来打造新的外壳。康斯坦茨大学(UniversityofKonstanz)和汉诺威莱布尼茨大学(LeibnizUniversityHannover)的研究人员在最近发表于《自然-通讯》(NatureCommunications)的一项研究中,成功破解了ACC的形成途径。DenisGebauer(汉诺威莱布尼茨大学)和GuinevereMathies(康斯坦茨大学)领导的研究人员利用了ACC不仅可以由生物体合成,也可以在实验室合成这一事实。他们利用魔角旋转核磁共振(MASNMR)光谱等先进方法分析了微小的ACC颗粒,以确定其结构。"我们一直在努力解释ACC的光谱。它们显示了我们起初无法建立模型的动力学,"马蒂斯说。汉诺威莱布尼茨大学的同事提供了一条重要线索。Gebauer小组的MaximGindele发现ACC可以导电。由于ACC颗粒非常脆弱,只有几十纳米大小(约为头发丝粗细的千分之一),因此这并不像插入两根导线那么容易。测量采用了电导原子力显微镜(C-AFM),通过微型悬臂扫描平面上的ACC粒子,并借助激光束进行观察。当悬臂放在其中一个纳米粒子上时,悬臂尖端会通过电流来测量电导率。马蒂斯研究小组的桑杰-维诺德-库马尔(SanjayVinodKumar)根据电导率观测结果,进一步进行了旨在探测动力学的MASNMR实验。他们在ACC粒子中发现了两种截然不同的化学环境。在第一种环境中,水分子嵌入坚硬的碳酸钙中,只能进行180度的翻转。第二种环境是水分子与溶解的氢氧根离子一起缓慢翻滚和平移。"剩下的挑战是如何将两种环境与观测到的导电性相协调。固体盐是绝缘体,因此第二种流动环境必须发挥作用,"马蒂斯说。在新模型中,移动水分子通过ACC纳米粒子形成了一个网络。溶解的氢氧根离子携带电荷。研究人员还解释了两种化学环境形成的原因:在水中,钙离子和碳酸根离子往往会粘在一起,形成动态的集合体,称为预核团。这些簇会发生相分离,形成致密的液滴,而液滴又会合并成更大的聚集体--这与肥皂泡的凝聚过程类似。"刚性、流动性较低的环境来自于致密液态纳米液滴的核心。另一方面,流动的水分子网络则是水滴表面在向固体ACC脱水过程中不完全凝聚而形成的,"Gebauer解释说。这些结果是朝着建立ACC结构模型迈出的重要一步。与此同时,它们还提供了确凿的证据,证明矿化始于预成核簇。马蒂斯总结说:"这不仅使我们更接近于了解生物矿化的秘密,而且还可以应用于开发结合二氧化碳的胶凝材料,由于我们现在知道ACC是一种导体,因此还可以应用于电化学设备。"编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1420581.htm手机版:https://m.cnbeta.com.tw/view/1420581.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人