天文学家发现偏振冲击波撼动了宇宙网

天文学家发现偏振冲击波撼动了宇宙网伴随着3个不同的宇宙网(气体、射电和磁力)观测的合成图像。近几十年来,天文学家在绘制宇宙网络图方面取得了重大进展,这为回答该领域一些最重要的问题开辟了新的途径。其中一个特别感兴趣的领域是研究宇宙尺度的磁场及其在塑造星系和宇宙结构方面的作用。发表在《科学进展》上的新研究,由国际射电天文研究中心(ICRAR)领导,与澳大利亚国家科学机构CSIRO合作,正在帮助我们进一步了解这些宇宙磁场。来自西澳大利亚大学(UWA)ICRAR节点的TessaVernstrom博士是这项研究的主要作者,她将磁性描述为自然界的一种基本力量。显示宇宙网磁场的合成图像,特点是拉出了无线电数据的堆叠方式。资料来源:Vernstrom等人,2023年"磁场充斥着宇宙--从行星和恒星到星系之间的最大空间。然而,宇宙磁力的许多方面还没有被完全理解,特别是在宇宙网中看到的规模。"Vernstrom博士说:"当物质在宇宙中融合时,它产生的冲击波加速了粒子,放大了这些星系间的磁场。"她的研究记录了来自宇宙网的无线电发射--这是强烈冲击波的第一个观测证据。这种现象以前只在宇宙中最大的星系团中观察到,并被预测为整个宇宙网中物质碰撞的'特征'。"这些冲击波会发出无线电辐射,这应该导致宇宙网在无线电频谱中'发光',但由于信号非常微弱,它从未真正被最终检测到。"来自西澳大利亚的默奇森广域阵列(MWA)射电望远镜的数据为这项研究提供了全天空的射电图。Vernstrom博士的团队在2020年开始搜索宇宙网的"无线电辉光",最初发现的信号可以归结为这些宇宙波。然而,由于这些最初的信号可能包括冲击波以外的星系和天体的发射,Vernstrom选择了一种背景"噪音"较小的不同信号类型--偏振射电光。"由于很少有来源发射偏振射电光,我们的搜索不容易受到污染,我们已经能够提供更有力的证据,证明我们在宇宙中最大的结构中看到来自冲击波的发射,这有助于证实我们关于这种大规模结构的增长模型。"宇宙网磁场模拟视频中的截屏。蓝色和绿色给出了模拟中磁场的(增长)强度,而红色则标志着气体温度。这项研究利用了来自全球磁离子介质调查、普朗克遗产档案、欧文斯谷长波长阵列和默奇森广域阵列的数据和全天空无线电图,将数据堆叠在宇宙网中已知的集群和丝状物上。堆叠方法有助于加强图像噪声之上的微弱信号,然后将其与通过Enzo项目产生的最先进的宇宙学模拟进行比较。这些模拟是第一个包括对作为这项研究的一部分观察到的宇宙冲击波的偏振射电光的预测。我们对这些磁场的理解可以用来扩展和完善我们关于宇宙如何增长的理论,并有可能帮助我们解决宇宙磁力的起源之谜。...PC版:https://www.cnbeta.com.tw/articles/soft/1348633.htm手机版:https://m.cnbeta.com.tw/view/1348633.htm

相关推荐

封面图片

天文学家在巨大的宇宙网络中探测到了冲击波

天文学家在巨大的宇宙网络中探测到了冲击波由无线电、磁场和气体组成的复合模拟图像这个宇宙网最早是在20世纪60年代从理论上提出的,其结构从20世纪80年代开始在模拟中被模拟出来。最近,天文学家已经能够绘制出它的地图,并观察到它的丝状物的光芒。在这项新的研究中,来自ICRAR和CSIRO的科学家们已经成功地观察到了来自宇宙网中滚动的冲击波的无线电发射。这样做并不容易,因为这些信号极其微弱,很难从宇宙中不断响起的所有其他无线电发射的背景中挑出来。因此,研究小组转而关注一种不太常见的变化--偏振射电信号,它是在宇宙网中作为一系列过程的最终结果而产生的。宇宙网中物质密度较大的区域将通过引力吸引更多的物质。当物质落入这些区域时,它加热了那里的气体,从而以冲击波的形式向外辐射。当这些冲击波到达极冷的空隙时,这种相互作用会发出偏振的无线电光。该小组使用了来自几个项目和观测站的数据,包括全球磁离子介质调查、普朗克遗产档案、欧文斯谷长波长阵列和默奇森宽场阵列。这使他们能够将检测到的偏振射电发射数据堆叠在已知的宇宙网集群和丝状物的顶部,显示出这些检测确实来自于网络。"由于很少有来源发射偏振射电光,我们的搜索工作不容易受到干扰和污染,已经能够提供更有力的证据,证明我们看到的是宇宙中最大结构中的冲击波发射,这有助于证实我们关于这种大规模结构的增长模型,"该研究的主要作者TessaVernstrom博士说。该团队表示,这些新的观测结果将帮助天文学家了解磁力在宇宙中最大尺度上是如何运作的。这项研究发表在《科学进展》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1348159.htm手机版:https://m.cnbeta.com.tw/view/1348159.htm

封面图片

天文学家可能已经发现了宇宙中最大的磁场

天文学家可能已经发现了宇宙中最大的磁场根据一项新的研究,科学家可能最终发现了我们所发现的最大磁场的证据。天文学家所指的这种宇宙网被认为是由星系之间的物质和丝线组成的。这些所谓的空隙实际上根本就不是空隙。相反,它们充满了星系间的物质,其中大部分是电离的。磁场在我们的宇宙中随处可见因为网是电离的,所以它也应该充满了磁场,形成一个大的、交织在一起的,不同于我们以前所见的任何东西。不过,正如在上面指出的,证明这种场的存在一直很棘手,因为我们无法直接探测到它。相反,我们必须通过它们对周围粒子的影响来观察这些场。因此,我们需要依靠对这些场所产生的无线电信号进行测绘。但是探测一个像网一样的大磁场也不容易。构成宇宙之网的丝状物是如此的分散,以至于它们发出的无线电信号不是很强。很多时候甚至被其他无线电噪音所淹没。为了解决这个问题,科学家们开始研究偏振的无线电光。通过聚焦于这些信号,他们能够看到特定方向的无线电信号。科学家们在最新的研究中所依赖的正是这些信号。其结果是首次探测到我们在宇宙中发现的最大磁场。...PC版:https://www.cnbeta.com.tw/articles/soft/1348167.htm手机版:https://m.cnbeta.com.tw/view/1348167.htm

封面图片

天文学家探测到80亿年前产生的射电暴

天文学家探测到80亿年前产生的射电暴艺术家眼中的遥远快速射电暴穿越银河系空间来到地球上的景象ESO/M.Kornmesser这个信号被命名为FRB20220610A,属于快速射电暴(FRB)。顾名思义,这是一种持续时间只有几毫秒的尖锐无线电波爆发,似乎从天空的各个角落涌来。它们的确切来源仍不清楚,但最有可能的是一种被称为磁星的高度磁化的中子星。迄今为止探测到的大多数FRB都来自数亿光年或数十亿光年之外。最近的一次只有几万光年--在我们的银河系内。但是,2022年6月10日进行的新探测是迄今为止发现的最遥远的FRB。研究小组说,80亿光年的距离很可能已经接近现代技术能够精确定位的极限。这项研究的第一作者斯图尔特-莱德博士说:"利用ASKAP的天线阵列,我们能够精确地确定爆发来自哪里。然后,我们利用位于智利的欧洲南方天文台(ESO)甚大望远镜(VLT)搜索源星系,发现它比迄今发现的任何其他FRB源都要古老和遥远,而且很可能就在一小群合并星系之中。"快速射电暴到达探测到它的仪器的艺术印象卡尔-诺克斯(OzGrav/斯温伯恩大学)研究小组说,这项研究还表明,快速射电暴可以帮助天文学家解开另一个宇宙之谜:失踪的物质。我们最好的宇宙模型显示,宇宙应该包含一定量的物质,但当科学家们统计所有星系、恒星、行星、黑洞和其他一切时,似乎存在着巨大的缺口--我们缺少了大约40%的正常物质预算(相对于暗物质而言,暗物质是完全不同的东西)。最主要的假设是,所有这些物质都是以极度弥散的气体形式漂浮在星系间的空间。这种气体非常稀薄,几乎不可能被探测到,但这正是FRB的用武之地。天文学家可以研究这些无线电信号中不同波长的光的到达时间,从而推断出它们所经过的物质密度。旅程越长,包含的数据就越多,这使得新的无线电信号成为一个宝库。果然,新的观测结果似乎与弥漫星系间气体假说相吻合,提供了一些迄今为止最有力的证据。"虽然我们仍然不知道是什么导致了这些巨大的能量爆发,但这篇论文证实了快速射电暴是宇宙中常见的事件,我们将能够利用它们来探测星系间的物质,并更好地了解宇宙的结构,"该研究的共同第一作者RyanShannon副教授说。这项研究发表在《科学》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1391093.htm手机版:https://m.cnbeta.com.tw/view/1391093.htm

封面图片

揭开早期宇宙的秘密:天文学家捕捉到来自遥远星系的无线电信号

揭开早期宇宙的秘密:天文学家捕捉到来自遥远星系的无线电信号现在,来自蒙特利尔和印度的研究人员从迄今为止最遥远的星系中捕捉到了一个特定波长的无线电信号,被称为21厘米线,使天文学家能够窥探早期宇宙的秘密。在印度的巨型元波射电望远镜的帮助下,这是第一次在如此大的距离上探测到这种类型的无线电信号。"一个星系会发出不同种类的无线电信号。直到现在,我们只可能从附近的星系中捕捉到这种特殊的信号,将我们的知识限制在那些离地球较近的星系中,"麦吉尔大学博士后研究员ArnabChakraborty说,他由MattDobbs教授指导。"但是多亏了一种自然发生的现象--引力透镜的帮助,我们可以从破纪录的距离捕捉到一个微弱的信号。这将有助于我们了解距离地球更远的星系的构成。"研究人员首次能够探测到来自一个被称为SDSSJ0826+5630的遥远的恒星形成星系的信号,并测量其气体成分。研究人员观察到这个特殊星系的气体含量的原子质量几乎是我们可见的恒星质量的两倍。来自该星系的无线电信号的图片研究小组检测到的信号是从这个星系发出的,当时宇宙只有49亿年的历史,使研究人员能够一窥早期宇宙的秘密。在麦吉尔大学物理系研究宇宙学的Chakraborty说:"这相当于回看了88亿年的时间。"引力透镜放大了来自遥远物体的信号,帮助我们窥视早期宇宙。在这个特定的情况下,信号因目标和观察者之间存在另一个大质量物体,即另一个星系而发生弯曲。"共同作者、印度科学研究所物理系副教授NirupamRoy说:"这有效地导致信号放大了30倍,使望远镜能够接收到它。"据研究人员称,这些结果证明了用引力透镜观察类似情况下的遥远星系的可行性。它还为用现有的低频射电望远镜探测恒星和星系的宇宙演化提供了令人兴奋的新机会。...PC版:https://www.cnbeta.com.tw/articles/soft/1339929.htm手机版:https://m.cnbeta.com.tw/view/1339929.htm

封面图片

释放宇宙力量:宇宙最大冲击波中的能量流动

释放宇宙力量:宇宙最大冲击波中的能量流动这项研究的数据来自欧洲X射线天文卫星XMM-牛顿。最近合并的星系团CIZAJ1358.9-4750。资料来源:名古屋大学星系团是宇宙中最大的自重力天体,聚集了大量高温气体。这些气体发出耀眼的X射线,使这些星系团清晰可见。当这些巨大的星系团合并时,会产生一个无与伦比的天文事件,产生一个方圆300万光年的冲击波。最近合并的星系团CIZA1359的X射线强度(左)和温度(右)图像。资料来源:名古屋大学在天文学中,测量天体的深度通常是一项巨大的挑战。然而,在这项研究中,研究小组利用最近两个星团的碰撞克服了这一困难。这一事件使我们有可能对星团的原始形状做出合理的估计。利用这些估计值,他们通过分析高温气体的温度分布确定了冲击前沿的速度。然后,他们将这一数值乘以星团的长度、宽度和深度,计算出冲击前沿转化为热量、粒子加速度和磁场放大的动能。这项研究发表在2023年2月的《日本天文学会刊物》(PASJ)上。在一篇相关论文中,Kurahara等人(PASJ,2022年12月)发现了由加速电子和冲击前沿周围的放大磁场产生的"同步射电发射"。据估计,其光度约为3.5×1033W。了解转换效率的分布将有助于我们弄清在星团合并中最大的冲击波下发生了什么。...PC版:https://www.cnbeta.com.tw/articles/soft/1372679.htm手机版:https://m.cnbeta.com.tw/view/1372679.htm

封面图片

天文学家发现有关星系阻止恒星形成的重要新信息

天文学家发现有关星系阻止恒星形成的重要新信息艺术家绘制的宇宙射线驱动的风(蓝色和绿色)叠加在三棱柱星系M33(红色和白色)的可见光图像上,该图像由欧洲南方天文台智利帕拉纳尔天文台的VLT巡天望远镜观测。资料来源:基础科学研究所-IPM和欧洲南方天文台(ESO)。随着星系的长期演化,这些风是导致恒星形成率放缓的原因。然而,这种风的主要来源被认为是由黑洞和超新星爆炸产生的冲击波驱动的物质喷流。宇宙射线被认为是这种效应较小的贡献者,特别是在有大量恒星形成的星系下,如M33星系。伊朗基础科学研究所的FatemahTabatabaei说:"我们已经在我们的银河系和仙女座星系中看到了由宇宙射线驱动的星系风,这些星系的恒星形成率要弱得多,但以前在像M33这样的星系中没有见过。"M33是一个螺旋状星系,距离地球近300万光年,是本地星系群的成员,这一集团中也包括银河系。Tabatabaei和一个国际科学家团队对M33进行了详细的、多波长的VLA观测。此外,他们还利用了从早期的VLA、德国Effelsberg射电望远镜、毫米波、可见光和红外望远镜的观测中收集的信息。比我们的太阳大得多的恒星在它们的生命周期中加速运行,最终以超新星的形式爆炸。当爆炸的冲击波将粒子加速到几乎是光速的时候,就会产生宇宙射线。如果有足够的这些宇宙射线,就会产生压力,驱动风,将恒星形成所需的气体运走。美国国家射电天文台的威廉-科顿说:"VLA的观测表明,M33中的宇宙射线正在逃离它们诞生的区域,使它们能够驱动更广泛的风。"根据他们的观察,天文学家得出结论,在M33多产恒星形成的巨大复合体中,大量的超新星爆炸和超新星残骸使得这种宇宙射线驱动的风更有可能出现。Tabatabaei说:"这意味着宇宙射线可能是银河系风的一个更普遍的原因,特别是在宇宙历史的早期,当恒星形成以更高的速度发生时。"她补充说:"这种机制因此成为理解星系随时间演变的一个更重要的因素。"...PC版:https://www.cnbeta.com.tw/articles/soft/1333783.htm手机版:https://m.cnbeta.com.tw/view/1333783.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人