革命性的材料可能解决IBM和谷歌发展量子计算遇到的关键问题

革命性的材料可能解决IBM和谷歌发展量子计算遇到的关键问题分层二维材料的异质结构的形成,设想为乐高式积木锁在一起。资料来源:ElizabethFloresgomezMurray普通计算机由数十亿个晶体管组成,被称为比特,并由二进制代码("0"=关闭,"1"=打开)支配。量子比特,也被称为量子比特,是基于量子力学的,可以同时是"0"和"1"。这被称为叠加,可以使量子计算机比常规的、经典的计算机更加强大。然而,打造量子计算机有一个问题。宾夕法尼亚州立大学物理学教授、该研究的通讯作者朱俊说:"IBM、Google和其他公司正在试图制造和扩大基于超导量子比特的量子计算机。如何将经典环境的负面影响降到最低,因为经典环境会导致量子计算机的运行出现错误,这是量子计算的一个关键问题。"这个问题的解决方案可能在一种被称为拓扑量子比特的异国版本中找到。朱说:"基于拓扑超导体的量子比特有望受到超导性的拓扑方面的保护,因此对环境的破坏性影响更加强大。"拓扑量子比特与数学中的拓扑学有关,即一个结构正在经历物理变化,如被弯曲或拉伸,但仍保持其原始形式的属性。这是一种理论类型的量子比特,尚未实现,但其基本思想是,某些材料的拓扑特性可以保护量子状态不受经典环境的干扰。物理学研究生和该研究的第一作者CequnLi说,目前有很多人关注拓扑量子计算。李说:"量子计算是一个非常热门的话题,人们正在考虑如何建立一种计算中误差较小的量子计算机。拓扑量子计算机是一种吸引人的方式。但拓扑量子计算的一个关键是为它开发合适的材料。"该研究的研究人员通过开发一种称为异质结构的层状材料,在这个方向上迈出了一步。该研究中的异质结构由一层拓扑绝缘体材料,铋锑碲化物或(Bi,Sb)2Te3,和一个超导材料层:镓组成。朱说:"我们开发了一种特殊的测量技术来探测(Bi,Sb)2Te3薄膜表面的近距离诱导超导性。近距离诱导超导性是实现拓扑超导体的一个关键机制。我们的工作表明,它确实发生在(Bi,Sb)2Te3薄膜的表面。这是朝着实现拓扑超导体迈出的第一步"。然而,这样的拓扑绝缘体/超导体异质结构很难创建。因为不同的材料有不同的晶格结构。如果你把两种材料放在一起,它们可能会相互发生化学反应,最后会出现混乱的界面。因此,研究人员正在使用一种被称为约束异质外延的合成技术,该技术正在MRSEC进行探索。这涉及到在镓层和(Bi,Sb)2Te3层之间插入一层外延石墨烯,它是一层一到两个原子厚的碳原子片。这使这些层能够衔接和结合,就像把乐高积木扣在一起一样。李说:"石墨烯将这两种材料分开,并作为一个化学屏障。因此,它们之间没有反应,我们最终得到了一个非常好的界面。"此外,研究人员证明了这种技术在晶圆水平上是可扩展的,这将使它成为未来量子计算的一个有吸引力的选择。晶圆是一种圆形的半导体材料切片,作为微电子的基底。这种异质结构具有拓扑超导体的所有元素,但也许更重要的是,它是一种薄膜,而且可能是可扩展的。因此,晶圆规模的薄膜在未来的应用上有很大的潜力,例如建立拓扑量子计算机。这项研究是CNS的IRG1-二维极地金属和异质结构团队的联合努力,由朱俊和宾夕法尼亚州立大学材料科学和工程教授JoshuaRobinson领导。参与这项研究的其他教师包括亨利-W-克纳尔早期职业教授和物理学副教授张翠珠,以及宾夕法尼亚州立大学材料科学和工程学院助理教授DanielleReifsnyderHickey。...PC版:https://www.cnbeta.com.tw/articles/soft/1348689.htm手机版:https://m.cnbeta.com.tw/view/1348689.htm

相关推荐

封面图片

亚马逊正在试验新芯片:或能解决量子计算关键问题

亚马逊正在试验新芯片:或能解决量子计算关键问题Desantis表示,如果量子计算错误能够获得缓解,新芯片能为更有用的量子计算铺平道路。他还补充道:“我们仍处于非常早期的结算,但这款芯片代表了量子计算纠错的重要一步。”亚马逊最早于2020年推出了基于云的亚马逊Bracket量子计算服务,并于去年公布了中性量子计算机Aquila。目前亚马逊Bracket拥有包括科学、金融等主要客户,其中还包括意大利国家核物理研究所。AWS也与去年宣布成立量子网络中心,开始推进研发“量子互联网”。...PC版:https://www.cnbeta.com.tw/articles/soft/1400389.htm手机版:https://m.cnbeta.com.tw/view/1400389.htm

封面图片

IBM计算机“基准”实验显示量子计算机将在两年内超越传统计算机

IBM计算机“基准”实验显示量子计算机将在两年内超越传统计算机这项新研究的成果发表在上周的《自然》杂志上。科学家们使用IBM量子计算机Eagle来模拟真实材料的磁性,处理速度比传统计算机更快。IBM量子计算机之所以能超越传统计算机,是因为其使用了一种特殊的误差缓解过程来补偿噪声带来的影响。而噪声正是量子计算机的一个基本弱点。基于硅芯片的传统计算机依赖于“比特(bit)”进行运算,但其只能取0或1这两个值。相比之下,量子计算机使用的量子比特可以同时呈现多种状态。量子比特依赖于量子叠加和量子纠缠等量子现象。理论上这使得量子比特的计算速度更快,而且可以真正实现并行计算。相比之下,传统计算机基于比特的计算速度很慢,而且需要按顺序依次进行。但从历史上看,量子计算机有一个致命的弱点:量子比特的量子态非常脆弱,来自外部环境的微小破坏也会永远扰乱它们的状态,从而干扰所携带的信息。这使得量子计算机非常容易出错或“出现噪声”。在这一新的原理验证实验中,127量子比特的Eagle超级计算机用建立在超导电路上的量子比特计算了二维固体的完整磁性状态。然后,研究人员仔细测量每个量子比特所产生的噪声。事实证明,诸如超级计算材料中的缺陷等因素可以可靠预测每个量子比特所产生的噪声。据报道,研究小组随后利用这些预测值来模拟生成没有噪音的结果。量子霸权的说法之前就出现过。2019年,谷歌的科学家们声称,公司开发的量子计算机Sycamore在200秒内解决了一个普通计算机需要1万年才能破解的问题。但谷歌量子计算机所解决的问题本质上就是生成一长串随机数,然后检查它们的准确性,并没有什么实际用途。相比之下,用IBM量子计算机完成的新实验是一个高度简化但有真实应用价值的物理问题。2019年谷歌量子霸权研究成果参与者之一、加州大学圣巴巴拉分校物理学家约翰·马丁尼斯(JohnMartinis)表示,“这能让人们乐观认为,它将在其他系统和更复杂的算法中发挥作用。”(辰辰)...PC版:https://www.cnbeta.com.tw/articles/soft/1366285.htm手机版:https://m.cnbeta.com.tw/view/1366285.htm

封面图片

超导新纪元: 二碲化铀如何重塑量子计算

超导新纪元:二碲化铀如何重塑量子计算他们的发现最近发表在著名的《自然》杂志上。乔-卡罗尔(JoeCarroll)是科克大学宏观量子物质小组实验室量子物理学教授塞缪斯-戴维斯(SéamusDavis)的一名博士研究员,也是一篇论文的第一作者,他发现了一种新型不寻常超导体二碲化铀(UTe2)中的空间调制超导状态。资料来源:ClareKeogh/UCC突破性发现第一作者乔-卡罗尔(JoeCarroll)是与UCC量子物理学教授塞缪斯-戴维斯(SéamusDavis)合作的博士研究员,他解释了论文的主题。"超导体是一种神奇的材料,具有许多奇特和不寻常的性质。最著名的是,它们能让电流以零电阻流动。也就是说,如果你将电流通过它们,它们不会开始发热,事实上,尽管承载着巨大的电流,它们也不会耗散任何能量。它们之所以能做到这一点,是因为在金属中移动的不是单个电子,而是结合在一起的成对电子。这些电子对共同形成了宏观量子力学流体"。"我们的团队发现,一些电子对形成了一种新的晶体结构,嵌入到这种背景流体中。这些类型的状态是我们小组在2016年首次发现的,现在被称为电子对密度波。这些电子对密度波是一种新形式的超导物质,我们仍在探索其特性。""对我们和更广泛的群体来说,尤其令人兴奋的是,UTe2似乎是一种新型超导体。近40年来,物理学家一直在寻找这样一种材料。电子对似乎具有内在角动量。如果这是真的,那么我们探测到的就是第一个由这些奇异电子对组成的对密度波"。对量子计算的实际影响当被问及这项工作的实际意义时,卡罗尔先生解释道;"有迹象表明,UTe2是一种特殊的超导体,可能会对量子计算产生巨大影响。典型的经典计算机使用比特来存储和处理信息。量子计算机依靠量子比特或量子比特来完成同样的工作。现有量子计算机面临的问题是,每个量子比特必须处于两种不同能量的叠加状态--就像薛定谔的猫既可以被称为'死'猫,也可以被称为'活猫'。这种量子态很容易被破坏,坍缩到能量最低的状态--'死'--从而切断任何有用的计算。"这给量子计算机的应用带来了巨大限制。然而,自从五年前发现UTe2以来,人们对它进行了大量研究,有证据表明它是一种超导体,可以作为拓扑量子计算的基础。在这种材料中,计算过程中的量子比特寿命不受限制,这为开发更稳定、更有用的量子计算机开辟了许多新途径。事实上,微软公司已经为拓扑量子计算投入了数十亿美元,因此这已经是一门成熟的理论科学。"科学界一直在寻找的是一种相关的拓扑超导体;UTe2似乎就是这种超导体。我们的发现为UTe2提供了另一块拼图。要利用这样的材料进行应用,我们必须了解它们的基本超导特性。所有的现代科学都是循序渐进的。我们很高兴能为了解一种材料做出贡献,这种材料可能会让我们更接近更实用的量子计算机。"结论与未来展望科克大学研究与创新副校长JohnF.Cryan教授向科克大学宏观量子物质小组实验室的研究团队表示祝贺:"这一重要发现将对量子计算的未来产生重大影响。未来几周,科克大学将启动"UCCFutures-未来量子与光子学"项目,SeamusDavis教授和宏观量子物质小组领导的研究使用了世界上最强大的显微镜之一,将在这一激动人心的项目中发挥至关重要的作用"。...PC版:https://www.cnbeta.com.tw/articles/soft/1376073.htm手机版:https://m.cnbeta.com.tw/view/1376073.htm

封面图片

模拟量子模拟器可能解决传统量子计算机无法解决的问题

模拟量子模拟器可能解决传统量子计算机无法解决的问题但我们谈论的不是你可能想象的房间大小的计算机。与传统的房间大小的计算机不同,这些模拟量子模拟器很小,由纳米电子电路上的混合金属半导体组成,而且研究人员以微米而不是米为单位进行测量。这使得它们比我们几十年前依赖的房间大小的计算机要可行得多。这些模拟量子模拟器通过创建一个"硬件类比"来解决量子物理学中的问题。研究人员使用一个简单的电路与两个量子组件相结合来测试模拟器。通过调整电压,他们创造了一种被研究人员称为"Z3准分子"的物质状态,其中电子只有平时电荷的三分之一。这一发现令人印象深刻的是,这是第一次在实验室的电子设备上创造出这样的状态。研究人员在《自然-物理学》杂志上发表了一篇关于他们的发现的论文,其中全面详述了模拟量子模拟器的情况。从这里开始的目标是扩大这些设备的规模,以解决量子计算中更复杂的问题。研究人员认为,这些模拟器将使他们能够解决那些过于复杂而无法在合理时间内用传统计算方法解决的数学模型。有了模拟量子模拟器,研究人员有了以前没有的"旋钮"可以转动。希望这将使他们能够理解并更好地解决构成量子物理学的复杂问题。模拟量子模拟器代表了量子计算的一种新的和创新的方法。随着最近的进步,可以看到更小的量子计算机被建造出来,人类可能很快就会比以前更多地了解量子物理学。...PC版:https://www.cnbeta.com.tw/articles/soft/1342791.htm手机版:https://m.cnbeta.com.tw/view/1342791.htm

封面图片

量子飞跃:IBM的纠错策略助其超越经典超级计算机

量子飞跃:IBM的纠错策略助其超越经典超级计算机冷却IBMEagle的低温恒温器的内部视图,包含127个量子比特,可以作为科学工具来探索经典方法可能无法解决的新规模问题。资料来源:IBMResearch不过,最近的一项研究表明,即使没有强大的纠错能力,也有办法减少误差,使量子计算机在当今世界发挥重要作用。纽约IBM量子公司的研究人员与加州大学伯克利分校和劳伦斯伯克利国家实验室的合作者在《自然》杂志上报告说,他们将一台127量子比特的量子计算机与一台最先进的超级计算机进行了比较。至少在一项特定的计算中,量子计算机的性能超过了超级计算机。研究人员之所以选择这项计算,并不是因为它对经典计算机特别具有挑战性,而是因为它类似于物理学家经常进行的计算。重要的是,计算的复杂程度可以提高,以测试目前噪声大、易出错的量子计算机能否为特定类型的普通计算提供精确结果。量子计算机在计算变得越来越复杂的过程中产生了可验证的正确解,而超级计算机算法却产生了错误答案,这一事实给人们带来了希望,即采用减少错误的量子计算算法,而不是更困难的纠错算法,可以解决尖端物理问题,如了解超导体和新型电子材料的量子特性。加州大学伯克利分校研究生、该研究合著者萨简特-阿南德(SajantAnand)说:"我们正在进入这样一个阶段:量子计算机可能能够完成目前经典计算机算法无法完成的事情。"IBM量子公司量子理论与能力高级经理萨拉-谢尔顿(SarahSheldon)补充说:"我们可以开始将量子计算机视为研究问题的工具,否则我们就无法研究这些问题。"反过来说,量子计算机对经典计算机的胜利可能会激发新的想法,以增强目前经典计算机上使用的量子算法,加州大学伯克利分校物理学副教授、托马斯和艾莉森-施耐德物理学讲座教授迈克尔-扎莱特尔(MichaelZaletel)说:"在研究过程中,我非常确信经典方法会比量子方法做得更好。因此,当IBM的零噪声外推版本比经典方法做得更好时,我百感交集。但是,思考量子系统是如何工作的,实际上可能会帮助我们找出处理问题的正确经典方法。虽然量子计算机做到了标准经典算法所做不到的事情,但我们认为这对改进经典算法是一个启发,以便将来经典计算机能像量子计算机一样运行良好。"增强噪声以抑制噪声IBM量子计算机看似优势的关键之一是量子错误缓解,这是一种处理量子计算噪音的新技术。自相矛盾的是,IBM的研究人员可控地增加量子电路中的噪声,从而得到噪声更大、更不准确的答案,然后向后推断计算机在没有噪声的情况下会得到的答案。这依赖于对影响量子电路的噪声的充分了解,以及对噪声如何影响输出的预测。之所以会出现噪声问题,是因为IBM的量子比特是敏感的超导电路,代表二进制计算中的0和1。当量子比特纠缠在一起进行计算时,热量和振动等不可避免的干扰会改变纠缠,从而带来误差。纠缠程度越高,噪声的影响就越大。此外,作用于一组量子比特的计算会在其他未参与计算的量子比特中引入随机误差。额外的计算会加剧这些错误。科学家们希望利用额外的量子比特来监测这些错误,以便对其进行纠正,这就是所谓的容错纠错。但是,实现可扩展的容错是一项巨大的工程挑战,对于数量越来越多的量子比特来说,容错是否可行还有待验证,Zaletel说。取而代之的是,IBM工程师提出了一种被称为零噪声外推法(ZNE)的误差缓解策略,即利用概率方法可控地增加量子设备上的噪声。根据一名前实习生的建议,IBM研究人员找到了阿南德、博士后研究员吴艳涛和Zaletel,请他们帮助评估使用这种误差缓解策略所获得结果的准确性。Zaletel开发了超级计算机算法来解决涉及量子系统的困难计算,例如新材料中的电子相互作用。这些算法采用张量网络模拟,可直接用于模拟量子计算机中相互作用的量子比特。Cori于2017年推出,是CrayXC40系列中的一个型号,拥有约30petaflops的惊人峰值性能,稳居当时全球超级计算机的第五位。它配备了2388个英特尔至强"Haswell"处理器节点、9,688个英特尔至强Phi"Knight'sLanding"节点和1.8PB的CrayDataWarpBurstBuffer固态设备,它的名字是为了纪念著名的生物化学家GertyCori。值得一提的是,GertyCori是第一位获得诺贝尔科学奖的美国女性,也是诺贝尔生理学或医学奖的首位女性获得者。Cori超级计算机于2023年5月31日退役。资料来源:伯克利实验室量子与经典:实验在几周的时间里,IBMQuantum的YoungseokKim和AndrewEddins在先进的IBMQuantumEagle处理器上运行了越来越复杂的量子计算,然后Anand在伯克利实验室的Cori超级计算机和Lawrencium集群以及普渡大学的Anvil超级计算机上使用最先进的经典方法尝试了同样的计算。当量子鹰于2021年推出时,它拥有所有量子计算机中数量最多的高质量量子比特,似乎超出了经典计算机的模拟能力。事实上,在经典计算机上精确模拟所有127个纠缠的量子比特需要天文数字的内存。量子态需要用127个独立数字的2的幂来表示。也就是1后面跟38个零;一般计算机可以存储约1000亿个数字,少了27个数量级。为了简化问题,阿南德、吴和扎莱特尔使用了近似技术,使他们能够在经典计算机上以合理的时间和成本解决这个问题。这些方法有点像jpeg图像压缩,即在可用内存的限制下,去掉不那么重要的信息,只保留获得准确答案所需的信息。Anvil超级计算机是一台功能强大的超级计算机,可提供先进的计算能力,支持各种计算和数据密集型研究。资料来源:普渡大学阿南德证实了量子计算机在不太复杂的计算中结果的准确性,但随着计算深度的增加,量子计算机的结果与经典计算机的结果出现了偏差。对于某些特定参数,阿南德能够简化问题并计算出精确解,从而验证量子计算结果优于经典计算机计算结果。在所考虑的最大深度上,虽然没有精确的解,但量子和经典结果却不一致。研究人员提醒说,虽然他们无法证明量子计算机对最难计算的最终答案是正确的,但"老鹰"在前几次运行中取得的成功让他们确信这些答案是正确的。"量子计算机的成功并非偶然。它实际上适用于整个电路家族,"扎莱特尔说。友好竞争与未来展望虽然扎莱特尔对预测这种减少错误的技术是否适用于更多的量子比特或更深入的计算持谨慎态度,但他说,这些结果还是鼓舞人心的。他说:"这激发了一种友好竞争的感觉,我认为我们应该能够在经典计算机上模拟他们正在做的事情。但我们需要用一种更聪明、更好的方式来思考这个问题--量子设备正处于一个表明我们需要不同方法的阶段。"一种方法是模拟IBM开发的ZNE技术。阿南德说:"现在,我们要问的是,我们能否将同样的误差缓解概念应用到经典张量网络模拟中,看看能否获得更好的经典结果。这项工作让我们有能力使用量子计算机作为经典计算机的验证工具,这颠覆了通常的做法。"...PC版:https://www.cnbeta.com.tw/articles/soft/1377527.htm手机版:https://m.cnbeta.com.tw/view/1377527.htm

封面图片

IBM和日本研究所开发下一代量子计算机 拥有10000个量子比特

IBM和日本研究所开发下一代量子计算机拥有10000个量子比特量子计算机以解决传统计算机无法解决的复杂问题而闻名。它们有望帮助发现新药,通过更高效的分销路线改善物流,以及许多其他应用。该研究所和IBM预计将在未来几天签署谅解备忘录并宣布这笔交易。据该研究所称,这将是IBM首次与外国研究机构在如此大规模的量子计算领域展开合作。正在开发的量子计算机预计将于2029年投入使用。该计算机拥有超过10000个量子比特,有望无误地计算高级组合。合作伙伴还将开发下一代量子计算机所需的半导体和超导集成电路。量子计算机在接近绝对零度的极低温度下运行,因此需要能够承受极端温度的半导体和电路。该研究所隶属于日本经济产业省,以其在人工智能(AI)相关技术方面的实力而闻名,并拥有与IBM合作项目所需的专利。它还希望引入日本零部件制造商,实现量产。IBM预计将在2025年开始销售拥有1000量子比特的量子计算机。该研究所和IBM将说服日本公司使用它们。该研究所将通过培训日本公司使用量子计算机做出贡献,例如制药商。量子计算机仍处于发展阶段。现有的133量子比特的量子计算机仍然会出错,在研究中使用时通常需要超级计算机的帮助。预计10000量子比特的版本无需超级计算机的帮助即可使用。科学家表示,要使量子计算机投入商业使用,硬件需要达到20000到30000个量子比特的水平。...PC版:https://www.cnbeta.com.tw/articles/soft/1434996.htm手机版:https://m.cnbeta.com.tw/view/1434996.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人