花费12年 完整的幼年果蝇大脑地图首次公布 解开人类意识的第一步

花费12年完整的幼年果蝇大脑地图首次公布解开人类意识的第一步这个新的线路图是剑桥大学和约翰霍普金斯大学的科学家们的工作成果,它是迄今为止第四个完整的连接组。此前,更简单的秀丽隐杆线虫、幼年海鞘Cionaintestinalis和海洋蠕虫Platynereisdumerilii的大脑之前已经被绘制出来,但是这些大脑最多有几百个神经元和几千个突触(连接)。幼年果蝇(Drosophiliamelanogaster)的高分辨率连接组成像显示了3016个神经元和它们之间的548000个连接。对于渴望全面绘制一种与人类共享大量基本生物学知识的昆虫的大脑的科学家来说,这已经是一个漫长的过程了。"已经过去50年了,这是第一个大脑连接组。"约翰霍普金斯大学生物医学工程师约书亚-T-沃格尔斯坦说:"这是一面旗帜,我们可以做到这一点。所有过程都在为这而努力。"这项具有里程碑意义的工作花了12年时间才完成,其中涉及的复杂过程令人震惊。首先,该团队使用电子显微镜将六小时大的雌性果蝇幼虫的大脑直观地切成了盐粒大小,不仅是几个部分,而是成千上万个部分。虽然电子显微镜捕捉到了每个切片的图像,但仅成像一项,3016个神经元中的每一个仍然需要一天时间。剑桥大学和约翰霍普金斯大学的科学家们跨领域的联合研究,包括神经科学、微生物学和计算机科学,看到了高清晰度的完全实现的大脑地图。成像显示了每一个神经元和连接,并对思维处理和行为提供了迷人的见解,例如最繁忙的电路如何通往和离开大脑的学习中心。果蝇具有复杂的学习和决策行为,它们是神经科学研究中研究最多的动物之一。更重要的是,该地图揭示了让人联想到机器学习架构的电路特征,这甚至可能为新的人工智能提供参考。Vogelstein说:"我们对果蝇代码的了解将对人类的代码产生影响。这就是我们想要了解的--如何编写一个导致人类大脑网络的程序。"绘制老鼠大脑的研究正在进行中,并可能在未来十年内实现。但这是一项艰巨的任务,其规模估计又要比幼年果蝇大一百万倍。目前的计算工具可以追踪数以百万计的神经通路,但不能像人脑那样拥有数万亿的神经通路。我们不太可能在很长一段时间内看到一个完整的人类连接组--这可能会映射出我们复杂意识的关键。这项研究发表在《科学》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1348813.htm手机版:https://m.cnbeta.com.tw/view/1348813.htm

相关推荐

封面图片

研究表明从果蝇、小鼠到人类 大脑结构都遵循普遍规律

研究表明从果蝇、小鼠到人类大脑结构都遵循普遍规律当磁体被加热时,会达到一个临界点,在此点上磁体会失去磁性,这就是所谓的"临界点"。当物理物体发生相变时,就会达到这个高度复杂的临界点。最近,美国西北大学的研究人员发现,大脑的结构特征也处于一个类似的临界点附近--处于或接近结构相变期。这些结果在人类、小鼠和果蝇的大脑中都是一致的,这表明这一发现可能具有普遍性。虽然目前还不清楚大脑结构正在哪个阶段之间过渡,但这些发现可以为大脑复杂性的计算模型提供新的设计。他们的研究成果发表在《通信物理学》上。人类大脑皮层数据集中一小块区域内部分神经元的三维重建。图片来源:哈佛大学/Google大脑结构和计算模型资深作者、西北大学物理学和天文学助理教授伊什特万-科瓦奇(IstvánKovács)说:"人类大脑是已知最复杂的系统之一,其结构细节的许多特性尚不清楚。其他一些研究人员已经从神经元动力学的角度研究了大脑临界性。但我们正在研究结构层面的临界性,以便最终理解它如何支撑大脑动态的复杂性。这一直是我们思考大脑复杂性的一个缺失。在计算机中,任何软件都可以在相同的硬件上运行,而在大脑中,动态和硬件密切相关。"人类大脑皮层数据集中一小块区域内部分神经元的三维重建。图片来源:哈佛大学/Google第一作者海伦-安塞尔(HelenAnsell)是埃默里大学的塔布顿研究员,研究期间在科瓦奇的实验室担任博士后研究员。他说:"冰融化成水就是一个日常例子。这仍然是水分子,但它们正在经历从固态到液态的转变。我们当然不是说大脑已经接近融化。事实上,我们没有办法知道大脑会在哪两个阶段之间过渡。因为如果它处于临界点的任何一边,它就不是大脑了。"将统计物理学应用于神经科学尽管研究人员长期以来一直在使用功能磁共振成像(fMRI)和脑电图(EEG)研究大脑动态,但神经科学的进步直到最近才提供了大脑细胞结构的大量数据集。这些数据为科瓦奇和他的团队提供了应用统计物理技术测量神经元物理结构的可能性。使用在线neuroglancer平台查看的人类大脑皮层数据集中的部分神经元快照。图片来源:哈佛大学/Google识别大脑结构中的临界指数科瓦奇和安塞尔分析了来自人类、果蝇和小鼠的三维大脑重建的公开数据。通过以纳米级分辨率检查大脑,研究人员发现这些样本展示了与临界相关的物理特性的特征。其中一个特性就是众所周知的神经元分形结构。当一个系统接近相变时,就会出现一组被称为"临界指数"的观测指标,而这种非微观的分形维度就是其中的一个例子。脑细胞在不同尺度上呈分形统计模式排列。放大后,分形形状具有"自相似性",即样本的较小部分与整个样本相似。观察到的各种神经元片段的大小也各不相同,这提供了另一条线索。科瓦奇认为,自相似性、长程相关性和广泛的大小分布都是临界状态的特征,在这种状态下,特征既不会太有组织,也不会太随机。这些观察结果产生了一组临界指数,用于描述这些结构特征。科瓦奇说:"我们在物理学的所有临界系统中都能看到这些现象。大脑似乎在两个阶段之间保持着微妙的平衡。"来自果蝇、小鼠和人类数据集的单个神经元重建示例。资料来源:美国西北大学不同物种的普遍临界性科瓦奇和安塞尔惊奇地发现,他们研究的所有大脑样本--来自人类、小鼠和果蝇--在不同生物体间具有一致的临界指数,这意味着它们具有相同的临界定量特征。生物体之间潜在的、兼容的结构暗示着一种普遍的管理原则可能在起作用。他们的新发现可能有助于解释为什么不同生物的大脑具有一些相同的基本原理。安塞尔说:"最初,这些结构看起来很不一样--整个苍蝇大脑的大小与人类的一个小神经元差不多。但随后我们发现,新出现的特性惊人地相似。""在生物体之间差异很大的许多特征中,我们依靠统计物理学的建议来检查哪些测量指标具有潜在的普遍性,例如临界指数。事实上,这些指标在不同生物体之间是一致的,"科瓦奇说。"作为临界性的一个更深层次的标志,所获得的临界指数并不是独立的--根据统计物理学的规定,我们可以从任意三个临界指数中计算出其余的临界指数。这一发现为建立简单的物理模型来捕捉大脑结构的统计模式开辟了道路。这种模型是大脑动态模型的有用输入,对人工神经网络架构也有启发意义"。今后,研究人员计划将他们的技术应用于新出现的数据集,包括更大的大脑部分和更多的生物体。他们的目标是找到这种普遍性是否仍然适用。编译自/scitechdaily...PC版:https://www.cnbeta.com.tw/articles/soft/1435389.htm手机版:https://m.cnbeta.com.tw/view/1435389.htm

封面图片

释放苍蝇的思想:果蝇大脑的完整突触图谱公布

释放苍蝇的思想:果蝇大脑的完整突触图谱公布描绘连通性的图表,其中神经元被表示为点,连通性更相似的神经元被绘制在一起。线条描述了神经元之间的连接。该图的边界显示了神经元形态的例子。资料来源:约翰霍普金斯大学/剑桥大学了解大脑的网络结构对于理解大脑功能至关重要。然而,由于技术上的限制,用电子显微镜(EM)对整个大脑进行成像并重建大脑的完整神经结构一直是一个挑战,而且只在三种生物中实现,这些生物的大脑相对简单,只包含几百个神经元。在这里,迈克尔-温丁及其同事提出了一个突触分辨率、基于EM的幼虫果蝇大脑的三维连接组,其中包含3016个神经元和548,000个突触,其组织结构远比以前的连接组所描绘的要复杂。对连接组的详细分析使Wingding等人能够描述不同的神经元和连接类型以及结构特征,揭示了广泛的多感官整合和跨半球互动。最复发性的神经结构与大脑学习中心的输入和输出神经元有关。昆虫大脑中的全套神经元,这些神经元是用突触分辨率的电子显微镜重建的。资料来源:约翰霍普金斯大学/剑桥大学据作者称,一些已确定的结构特征,包括多层捷径和嵌套的递归循环,与最先进的机器学习网络的突出特征相类似。...PC版:https://www.cnbeta.com.tw/articles/soft/1354971.htm手机版:https://m.cnbeta.com.tw/view/1354971.htm

封面图片

科学家从章鱼视觉系统的地图中发现大脑进化的新线索

科学家从章鱼视觉系统的地图中发现大脑进化的新线索章鱼大脑的荧光图像显示不同的不同类型的神经元的位置信用:Niell实验室他们在一篇新的科学论文中列出了章鱼视觉系统的详细地图。在该地图中,他们对大脑中专门用于视觉的部分的不同类型的神经元进行了分类。这一结果对其他神经科学家来说是一个宝贵的资源,提供了可以指导未来实验的细节。此外,它还可以让我们更广泛地了解大脑和视觉系统的进化情况。该团队今天(10月31日)在《当代生物学》杂志上报告了他们的发现。CrisNiell在俄亥俄大学的实验室研究视觉,主要是在小鼠身上。但是几年前,博士后JuditPungor给实验室带来了一个新物种--加州双点章鱼。尽管传统上它并不被用作实验室的研究对象,但这种头足类动物很快就引起了俄亥俄大学神经科学家的兴趣。与小鼠不同,小鼠并不以拥有良好的视觉而闻名,"章鱼有一个惊人的视觉系统,它们的大脑中有很大一部分专门用于视觉处理,"Niell说。"它们的眼睛与人类的眼睛非常相似,但在那之后,大脑就完全不同了。"章鱼和人类的最后一个共同祖先是在5亿年前,此后,这些物种在非常不同的环境中进化。因此,科学家们不知道视觉系统的相似之处是否超出了眼睛的范围,或者章鱼是否反而使用了完全不同种类的神经元和大脑回路来实现类似的结果。"看到章鱼的眼睛如何与我们的眼睛相似地进化,思考章鱼的视觉系统如何能够成为更普遍地理解大脑复杂性的模型是一件很酷的事情,"Niell实验室的研究生和该论文的第一作者MeaSongco-Casey说。"例如,是否有基本的细胞类型是这种非常聪明、复杂的大脑所需要的?"在这里,研究小组使用遗传技术来确定章鱼视叶中不同类型的神经元,这是大脑中专门用于视觉的部分。他们挑选出六大类神经元,根据它们发出的化学信号进行区分。观察这些神经元中某些基因的活动,然后发现更多的亚型,为更具体的作用提供了线索。在某些情况下,科学家们精确地指出了特定的神经元群在独特的空间排列中--例如,在视叶周围的一圈神经元都使用一种叫做辛胺的分子发出信号。果蝇在活动时使用这种类似于肾上腺素的分子来增加视觉处理。因此,它也许在章鱼中也有类似的作用。"现在我们知道有这种非常特殊的细胞类型,我们可以开始进入并弄清楚它的作用,数据中大约有三分之一的神经元看起来还没有完全发育。章鱼的大脑在动物的生命周期中不断成长并增加新的神经元。这些不成熟的神经元,尚未整合到大脑电路中,是大脑处于扩张过程中的一个标志!"。然而,该地图并没有像研究人员所想的那样,显示出明显从人类或其他哺乳动物大脑转移过来的神经元组。这些神经元并没有相互映射--它们使用不同的神经递质。但是,也许它们正在进行相同种类的计算,只是方式不同。深入挖掘还需要更好地掌握头足类动物的遗传学。参与这项研究的安德鲁-克恩实验室的研究生加比-科芬(GabbyCoffing)说,由于章鱼在传统上没有被用作实验动物,许多用于果蝇或小鼠的精确遗传操作的工具还不存在于章鱼。有很多基因我们不知道它们的功能是什么,因为我们还没有对很多头足类动物的基因组进行排序。如果没有相关物种的基因数据作为比较点,就很难推断出特定神经元的功能。研究团队正在迎接这一挑战。他们现在正在努力绘制章鱼大脑视叶以外的地图,看看他们在这项研究中关注的一些基因如何在大脑的其他地方出现。他们还在记录视叶中的神经元,以确定它们如何处理视觉场景。随着时间的推移,他们的研究可能会使这些神秘的海洋动物不再那么神秘--同时也为我们自己的进化提供一点启示。...PC版:https://www.cnbeta.com.tw/articles/soft/1331421.htm手机版:https://m.cnbeta.com.tw/view/1331421.htm

封面图片

科学家绘制人类大脑一小部分的高分辨率地图

科学家绘制人类大脑一小部分的高分辨率地图根据发表在《》期刊上的一项研究,哈佛和Google的科学家绘制出人类大脑一小部分的高分辨率3D地图。图谱揭示了脑细胞神经元之间的新连接模式,以及围绕自身形成结的细胞,以及几乎互为镜像的成对神经元。3D地图覆盖了大约一立方毫米的体积,是整个大脑的百万分之一,包含了大约57,000个细胞和1.5亿个突触。它包含了1.4pb的庞大数据。这块大脑碎片取自一名45岁的女性,当时她正在接受治疗癫痫的手术。它来自大脑皮层,这是大脑中负责学习、解决问题和处理感官信号的部分。样品浸泡在防腐剂中,并用重金属染色,使细胞更容易被看到。研究人员将样本切成大约5000片——每片只有34纳米厚——可以用电子显微镜成像。他们建立了AI模型,能将显微镜图像拼接在一起,以3D方式重建整个样本。来源,频道:@kejiqu群组:@kejiquchat

封面图片

是什么让人类的智慧与众不同?科学家找出了解大脑的新窗口

是什么让人类的智慧与众不同?科学家找出了解大脑的新窗口研究人员发现,人类大脑增强的处理能力可能源于我们神经元结构和功能的差异。图像来源:昆士兰大脑研究所/斯蒂芬-威廉姆斯教授他们最近在《细胞报告》杂志上发表了他们的发现。昆士兰大学昆士兰大脑研究所(QBI)的斯蒂芬-威廉姆斯教授解释说,他的团队研究了人类新皮层锥体神经元嵌入其神经元网络的电特性。"为了研究人类神经元,我们从人类新皮层的小块组织中制备了活体组织片,这些组织片是从两家医院接受神经外科手术以缓解难治性癫痫或切除脑肿瘤的病人身上收集的,"威廉姆斯教授说。"我们通过对人类和啮齿类动物的锥体神经元的细胞体和细树突进行错综复杂的同步电记录来比较人类和啮齿类动物的电特性。我们的研究显示,人类和啮齿动物的新皮层锥体神经元具有共同的基本生物物理特性。例如,我们发现人类和啮齿类新皮层锥体神经元的树突都会产生树突钠尖峰,这表明整合一个神经元接收的成千上万个输入信号的机制是一致的。然而,我们发现人类新皮层锥体神经元的计算功能得到了极大的加强"。该研究的共同作者、QBI博士后HelenGooch博士表示,研究小组发现人类新皮层锥体神经元的树状结构,也就是携带电信号的树枝状延伸部分比其他哺乳动物,如啮齿类动物的树状结构更大、更复杂。Gooch博士说:"人类树突树的这种阐述伴随着在多个地点产生树突尖峰,这些尖峰积极地在神经元中扩散,以驱动每个神经元的输出信号。我们认为,这种分布式树突信息处理的增强因此可能是提高我们大脑整体处理能力的一个因素"。这种发现的转化为更好地理解人类大脑的电活动在疾病中如何受到干扰铺平了道路。母校医院神经科医生和共同作者LisaGillinder博士说:"作为临床研究人员,我们不仅对了解人类脑细胞的正常功能感到兴奋,而且通过这一领域的未来研究,我们还旨在更好地了解像癫痫这样的疾病所发生的功能变化,希望能改善治疗。"...PC版:https://www.cnbeta.com.tw/articles/soft/1333357.htm手机版:https://m.cnbeta.com.tw/view/1333357.htm

封面图片

小触角,大发现:果蝇如何以少感知多?

小触角,大发现:果蝇如何以少感知多?这项研究的第一作者、物理学博士生帕尔卡-普里(PalkaPuri)说:"我们的工作揭示了昆虫用来对复杂嗅觉刺激做出反应的感觉处理算法。研究表明,昆虫感觉神经元的专门组织是解开谜题的关键--实现了一个重要的处理步骤,促进了中枢大脑的计算。"Puri和他的合著者,博士后学者Shiuan-TzeWu、副教授Chih-YingSu和助理教授JohnatanAljadeff在《美国国家科学院院刊》上发表了这些发现。这项新研究挑战了以前关于中枢大脑是果蝇气味处理的主要场所的假设。相反,它表明昆虫感官能力的有效性依赖于其感官系统外围的"预处理"阶段,该阶段为稍后在中枢脑区进行的计算准备气味信号。加州大学圣迭戈分校的科学家们提出了一种解决方案,解决了果蝇如何利用简单而高效的系统识别气味的问题。图片来源:加州大学圣地亚哥分校阿尔杰德夫实验室果蝇通过触角来感知气味,触角上长满了能探测周围环境元素的感觉毛。每根感觉毛通常有两个嗅觉受体神经元(或称ORN),它们会被环境中不同的气味分子激活。耐人寻味的是,同一根感觉毛上的嗅觉受体神经元通过电相互作用紧密耦合在一起。这种情况就好比两根载流导线紧靠在一起。电线携带的信号通过电磁相互作用相互干扰。然而,就果蝇的嗅觉系统而言,这种干扰是有益的。研究人员发现,当果蝇遇到气味信号时,感受器之间的特定干扰模式能帮助果蝇迅速计算出气味的"要点":"它对我是好是坏?"外围的这一初步评估结果随后被传递到果蝇大脑中枢的一个特定区域,在那里,有关外界气味的信息被转化为行为反应。研究人员发现,当果蝇遇到气味信号时,嗅觉感受器之间的特定干扰模式能帮助果蝇快速计算出气味的"要点"。资料来源:PalkaPuri,加州大学圣地亚哥分校研究人员构建了一个数学模型,说明气味信号是如何通过ORN之间的电耦合进行处理的。然后,他们分析了蝇类大脑的线路图("connectome"),这是霍华德-休斯医学研究所研究园区的科学家和工程师生成的一个大规模数据集。这样,研究人员就能追踪来自感官外围的气味信号是如何整合到大脑中枢的。生物科学学院教师阿尔杰德夫说:"值得注意的是,我们的工作表明,最佳气味混合--每根感觉毛发最敏感的精确比例--是由耦合嗅觉神经元之间的基因预定大小差异决定的。我们的工作凸显了感觉外围在中枢大脑处理先天意义气味和学习气味方面意义深远的算法作用。"阿尔杰德夫用一个形象的比喻描述了这一系统。果蝇就像一台可以检测特定类型图像的专用相机,它已经开发出一种基因驱动的方法来区分图像,或者在这种情况下,区分气味混合物。他说:"我们发现,果蝇的大脑具有从这种非常特殊的相机中读取图像的线路,然后启动行为。"为了得出这些结果,研究人员将苏的实验室以前的研究成果进行了整合,这些研究成果描述了果蝇嗅觉系统中ORNs在感觉毛中的保守组织。在每只果蝇身上,相同气味分子所携带的信号总是相互干扰,这一事实向研究人员表明,这种组织是有意义的。苏说:"这项分析表明,大脑高级中枢的神经元如何利用外围的平衡计算。真正将这项工作提升到另一个高度的是,这种外围预处理能够在多大程度上影响高级大脑功能和电路操作。"这项工作可能会启发人们研究外围器官处理过程在其他感官(如视觉或听觉)中的作用,并有助于为设计具有解释复杂数据能力的小型检测设备奠定基础。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1435231.htm手机版:https://m.cnbeta.com.tw/view/1435231.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人