让全息技术更实用:改变紧凑型半导体激光器的简便方法

让全息技术更实用:改变紧凑型半导体激光器的简便方法这类新的激光阵列结合了腔体和表面发射配置的优势,以实现高质量的照明和高速通信。资料来源:2023KAUST;OmarAlkhazragi垂直腔表面发射激光器,或称VCSEL就是这样一种装置。这些装置是通过在基底上精确地放置或生长交替的半导体层来创造一个高反射的堆栈。然后在上面生长活性材料,接着是第二个反射层。然后,激光可以从该设备的顶部发射出来。VCSEL的优势在于可以在同一衬底上同时创建和使用数百个,但光束容易出现斑点状的轮廓,这使得它不适合于照明、全息、投影和显示等应用。这些都需要在垂直于光束传播方向的平面上有均匀的光线。斑点源于腔体的高度有序性,它只允许发射少量的模式或光束轨迹。研究员OmarAlkhazragi解释说:"VCSEL利用了一个有序的腔体,它只允许光在少数模式下产生共振,而且效率特别高。这些模式中的光子相互干扰,导致斑点和低照明质量"。Alkhazragi和KAUST的同事以及来自中国的合作者已经证明,只需改变设备的形状,打破腔体的对称性,就可以减少来自VCSEL的激光的斑点。这在生成的光中引入了混乱的行为,并允许发射更多的模式。Alkhazragi和他的团队研究了具有D形腔的VCSEL,并将其与具有标准圆柱形或O形几何形状的VCSEL进行比较。他们观察到,D型设备表现出大幅降低的相干性,并相应地增加了60%的光功率,这是可以实现的最大限度。研究人员将这一改进归功于腔内光线的混乱动态。由于光是以相互不相干的模式发射的,所以斑点的可见度降低了。Alkhazragi说:"机器学习可以帮助设计腔体,进一步最大化模式的数量,降低相干性,从而将斑点密度降低到人类的感知之下。"...PC版:https://www.cnbeta.com.tw/articles/soft/1352683.htm手机版:https://m.cnbeta.com.tw/view/1352683.htm

相关推荐

封面图片

科学家开发出突破性微型光纤激光器 更锐利、更小巧、更智能

科学家开发出突破性微型光纤激光器更锐利、更小巧、更智能基于氮化硅光子集成电路的全封装混合集成铒激光器的光学图像,可提供光纤激光器相干性和以前无法实现的频率可调谐性。资料来源:AndreaBancora和YangLiu(洛桑联邦理工学院)光纤激光器使用掺杂稀土元素(铒、镱、钕等)的光纤作为光增益源(产生激光的部分)。光纤激光器能发出高质量的光束,输出功率高,效率高,维护成本低,经久耐用,而且体积通常比气体激光器小。光纤激光器也是低相位噪声的"黄金标准",这意味着它们的光束可以长期保持稳定。尽管如此,人们对芯片级光纤激光器微型化的需求仍在不断增长。基于铒的光纤激光器尤其令人感兴趣,因为它们符合保持激光器高相干性和稳定性的所有要求。但是,要实现光纤激光器的微型化,就必须在小尺度上保持其性能。现在,EPFL的刘洋博士和TobiasKippenberg教授领导的科学家们制造出了首台芯片集成的掺铒波导激光器,其性能接近光纤激光器,将宽波长可调谐性与芯片级光子集成的实用性相结合。这一突破发表在《自然-光子学》(NaturePhotonics)上。制造芯片级激光器研究人员采用最先进的制造工艺开发出了芯片级铒激光器。他们首先在超低损耗氮化硅光子集成电路的基础上构建了一个一米长的片上光腔(一组提供光反馈的反射镜)。刘博士说:"尽管芯片尺寸小巧,但我们却能将激光腔设计成米级长度,这要归功于这些微oring谐振器的集成,它们能在不增大设备物理尺寸的情况下有效延长光路。"然后,研究小组在电路中植入高浓度铒离子,选择性地产生激光所需的有源增益介质。最后,他们将电路与III-V族半导体泵浦激光器集成,以激发铒离子,使其发光并产生激光束。基于掺铒光子集成电路的混合集成激光器的光学图像,该激光器具有光纤激光相干性和以前无法实现的频率可调谐性。资料来源:YangLiu(洛桑联邦理工学院)为了完善激光器的性能并实现精确的波长控制,研究人员设计了一种创新的腔内设计,其特点是基于微孔的Vernier过滤器,这是一种可以选择特定光频的光学过滤器。滤波器可在很大范围内对激光波长进行动态调整,从而使其在各种应用中都能发挥作用。这种设计支持稳定的单模激光,其内在线宽仅为50Hz,非常窄,令人印象深刻。它还具有显著的边模抑制功能--激光器能够以单一、稳定的频率发光,同时将其他频率("边模")的强度降至最低。这确保了高精度应用在整个光谱范围内的"干净"和稳定输出。这种芯片级铒光纤激光器的输出功率超过10mW,边模抑制比超过70dB,性能优于许多传统系统。它还具有非常窄的线宽,这意味着它发出的光非常纯净和稳定,这对于传感、陀螺仪、激光雷达和光学频率计量等相干应用非常重要。基于微光的Vernier滤波器使激光器在C波段和L波段(用于电信的波长范围)内具有40nm的宽波长可调谐性,在调谐和低光谱尖刺指标("尖刺"是不需要的频率)方面都超越了传统光纤激光器,同时与当前的半导体制造工艺保持兼容。将铒光纤激光器微型化并集成到芯片级设备中可降低其总体成本,使其可用于电信、医疗诊断和消费电子等领域的便携式高度集成系统。它还可以缩小光学技术在其他各种应用中的规模,如激光雷达、微波光子学、光频合成和自由空间通信。"这种新型掺铒集成激光器的应用领域几乎是无限的,"Liu说。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1434644.htm手机版:https://m.cnbeta.com.tw/view/1434644.htm

封面图片

立芯光电:808nm 高功率半导体激光器芯片取得显著进展

立芯光电:808nm高功率半导体激光器芯片取得显著进展立芯光电官微消息,公司在808nm高功率半导体激光器芯片上取得显著进展。808nm半导体激光器作为理想的、高效率的固体激光器泵浦源,在先进制造、机械加工、医疗美容、激光显示、科研与航空航天等领域发挥着重要作用。随着市场对高效能激光解决方案的需求不断上升,高功率、高效率的激光芯片已成为推动行业发展的关键因素。公司研发团队通过对结构升级及外延技术优化,提高了808nm高功率半导体激光器芯片的斜率效率、高温特性及输出功率等性能;通过优化腔面镀膜技术,芯片腔面的损伤阈值COMD得到提高,从而使芯片的可靠性得到大幅提升。

封面图片

日本研究人员实现精确控制氮化镓基垂直腔面发射激光器的腔长

日本研究人员实现精确控制氮化镓基垂直腔面发射激光器的腔长功率转换效率超过20%的氮化镓紫色表面发光激光器。资料来源:TetsuyaTakeuchi/名城大学GaN-VCSEL由两层被称为分布式布拉格反射镜(DBR)的特殊半导体反射镜组成,中间由有源GaN半导体层隔开,形成光谐振腔,激光就在其中产生。谐振腔的长度对于控制目标激光波长(即谐振波长)至关重要。迄今为止,已开发出两种基于氮化镓的VCSEL结构:一种是底部介质DBR,另一种是底部氮化铝铟(AlInN)/氮化镓DBR。这两种结构都能产生光输出功率超过20毫瓦、壁塞效率(WPE)超过10%的VSCEL。然而,AlInN/GaNDBR的停止波长带宽较窄,因此VCSEL只能发射窄波长范围内的光。此外,传统的腔体长度控制方法需要对测试腔体层进行预实验,以确定其生长速度,这会导致VCSEL腔体的估计厚度和最终厚度之间存在误差。这种误差会导致共振波长超出AlInN/GaNDBR的窄停止带宽,从而严重影响性能。腔长控制的创新为了解决这个问题,在最近的一项研究中,日本名城大学材料科学与工程系教授竹内哲也领导的研究人员为基于氮化镓的VCSEL光腔开发了一种新的原位腔长控制方法。通过利用原位反射率光谱测量精确控制氮化镓层的生长,研究人员实现了精确的腔长控制,与目标谐振波长的偏差仅为0.5%。现在,他们进一步扩展了这一创新技术,并展示了完整VSCEL的腔长控制。竹内教授解释说:"VCSEL的腔体不仅包含氮化镓层,还包含氧化铟锡(ITO)电极和五氧化二铌(Nb2O5)间隔层,而这些都无法通过相同的原位反射率光谱测量系统进行控制。在这项研究中,我们开发了一种精确校准这些附加层厚度的技术,从而实现了高效的VCSEL。"他们的研究成果发表在《应用物理通讯》(AppliedPhysicsLetters)杂志第124卷第13期上。附加层的校准技术为了校准附加层的厚度,研究人员首先在使用原位空腔控制生长的GaN测试结构上沉积了不同厚度的ITO电极和Nb2O5间隔层。鉴于原位反射率测量无法用于这些附加层,他们直接使用原位反射率光谱测量来评估这些测试空腔结构的共振波长。获得的共振波长发生了红移,即随着ITO和Nb2O5层厚度的增加,波长也随之增加。接下来,研究人员绘制了共振波长偏移与ITO和Nb2O5层厚度的函数关系图,从而获得了有关其光学厚度的准确信息。他们利用这些信息精确校准了目标VCSEL共振波长的ITO层和Nb2O5层厚度。这种方法产生的共振波长控制偏差非常小,在3%以内,在光学厚度方面可与现场控制方法相媲美。最后,研究人员通过在利用原位腔体控制技术生长的VCSEL腔体中加入调谐ITO电极和Nb2O5间隔层,制造出了孔径大小为5至20µm的GaN-VCSEL。这些VCSEL的峰值发射波长与设计共振波长的偏差仅为0.1%。值得注意的是,得益于精确的腔长控制,5微米孔径的VCSEL实现了21.1%的WPE,这是一项重大成就。竹内教授总结说:"就像高精度的刻度尺可以制造精细的架子一样,精确地使用氮化镓层的原位厚度控制,结合ITO电极和Nb2O5间隔层的厚度校准,可以实现VCSEL的高度可控制造,是获得高性能和高可重复性的氮化镓基VCSEL的有力工具,可用于高效光电设备。"编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1432687.htm手机版:https://m.cnbeta.com.tw/view/1432687.htm

封面图片

EPFL团队开发出新型芯片级激光源 能产生更短的波长

EPFL团队开发出新型芯片级激光源能产生更短的波长由半导体激光器激活的微型谐振器。图片来源:2023EPFL/AlainHerzog-CC-BY-SA4.0这项开创性工作由卡米耶-布雷斯(CamilleBrès)教授和来自洛桑联邦理工学院工程学院的博士后研究员马可-克莱门蒂(MarcoClementi)领导,是光子学领域的重大进展,对电信、计量学和其他高精度应用具有重要意义。提高相干性和可视性这项研究发表在《光:科学与应用》杂志上发表的这项研究揭示了PHOSL研究人员如何与光子学和量子测量实验室合作,成功地将半导体激光器与包含微谐振器的氮化硅光子电路集成在一起。这种集成产生了一种混合装置,能够在近红外和可见光范围内发射高度均匀和精确的光,填补了长期以来困扰业界的技术空白。"半导体激光器在现代技术中无处不在,从智能手机到光纤通信,无所不有。然而,由于缺乏相干性和无法有效产生可见光,它们的潜力一直受到限制,"布雷斯教授解释说。"我们的工作不仅提高了这些激光器的相干性,还将其输出转向可见光谱,为其应用开辟了新途径。"CamilleBrès教授和MarcoClementi在实验室。图片来源:2023EPFL/AlainHerzog-CC-BY-SA4.0这里所说的相干性是指激光器发出的光波相位的一致性。高相干性意味着光波同步,从而产生具有非常精确的颜色或频率的光束。这一特性对于激光光束的精度和稳定性要求极高的应用(如计时和精密传感)来说至关重要。提高精度和改进功能该团队的方法是将市面上的半导体激光器与氮化硅芯片耦合在一起。这种微小的芯片是采用行业标准、高性价比的CMOS技术制造的。由于氮化硅材料具有优异的低损耗特性,因此几乎没有光被吸收或逃逸。半导体激光器发出的光通过微型波导流入极小的空腔,光束被截留在空腔中。这些被称为微环谐振器的空腔经过精密设计,可在特定频率上产生共振,选择性地放大所需的波长,同时衰减其他波长,从而增强发射光的相干性。另一项重大成就是混合系统能够将商用半导体激光器发出的光的频率提高一倍,从而实现从近红外光谱到可见光光谱的转变。频率和波长之间的关系成反比,也就是说,如果频率增加一倍,波长就会减少一半。虽然近红外光谱可用于通信,但更高的频率对于制造更小、更高效的设备(如原子钟和医疗设备)也是必不可少的,因为这些设备需要更短的波长。当腔体中的滞留光经历一个称为全光极化的过程后,氮化硅中就会产生所谓的二阶非线性,从而实现更短的波长。这里所说的非线性是指光在与材料相互作用时产生的与频率不成正比的显著变化,即幅度上的跳跃。氮化硅通常不会产生这种特定的二阶非线性效应,而研究小组通过一项优雅的工程设计来诱发这种效应:该系统利用光在腔体内共振时产生电磁波的能力,激发材料的非线性特性。为未来技术铺平道路"我们不仅在改进现有技术,还在推动半导体激光器的发展,"在该项目中发挥关键作用的马可-克莱门蒂(MarcoClementi)说。"通过缩小电波长和可见光波长之间的差距,我们为生物医学成像和精确计时等领域的新应用打开了大门。"这项技术最有前景的应用之一是计量学,特别是在开发紧凑型原子钟方面。导航技术进步的历史取决于精确计时器的便携性--从16世纪确定海上经度,到今天确保太空任务的精确导航和实现更好的地理定位。"克莱门蒂指出:"这一重大进步为未来的技术奠定了基础,其中一些技术尚待构思。"该团队对光子学和材料科学的深刻理解有可能带来更小、更轻的设备,并降低激光器的能耗和生产成本。他们有能力利用工业标准制造技术,将一个基本的科学概念转化为实际应用,这凸显了解决复杂技术挑战的潜力,从而带来不可预见的进步。参考文献:MarcoClementi、EdgarsNitiss、JunqiuLiu、ElenaDurán-Valdeiglesias、SofianeBelahsene、HélèneDebrégeas、TobiasJ.Kippenberg和Camille-SophieBrès,"通过自注入锁定全光极化实现芯片级二次谐波源",2023年12月8日,《光:科学与应用》。DOI:10.1038/s41377-023-01329-6编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1404005.htm手机版:https://m.cnbeta.com.tw/view/1404005.htm

封面图片

长春光机所在量子精密测量用窄线宽半导体激光器方面取得新进展

长春光机所在量子精密测量用窄线宽半导体激光器方面取得新进展中国科学院长春光学精密机械与物理研究所大功率半导体激光器研究团队在王立军院士、宁永强研究员的领导下,近年来开展了先进窄线宽半导体激光器及关键技术攻关。近日,该团队陈超副研究员报道了一种基于外部光反馈结构的852nm窄线宽、线偏振半导体激光器。激光器结构通过引入飞秒激光诱导的双折射Bragg光栅滤波器,并与高偏振相关性半导体增益芯片混合集成,利用偏振模式选择性反馈和注入锁定技术,实现了超过30dB偏振消光比和低至2.58kHz的高线偏振、窄线宽激光输出。该激光器可作为量子精密测量系统的潜在原子泵浦光源,并且基于前期在抗辐射、窄线宽激光器方面的研究基础,亦有希望用于空间环境中星载和箭载的冷原子量子实验系统。

封面图片

照亮前行之路:卓越片上激光器的量子探索

照亮前行之路:卓越片上激光器的量子探索量子点和量子阱激光二极管由III-V族QW/QDDFB激光器和SiN微扰谐振器组成量子点和量子阱激光二极管:微谐振器的未来基于量子阱(QW)和量子点(QD)半导体材料的片上激光二极管现已成为各种应用的主要候选器件。量子阱(QW)和量子点(QD)基于半导体材料的片上激光二极管目前已成为各种应用的主要候选器件,它们具有功率效率高、可在高温下工作和体积小等诱人特性。尽管QWs已经广泛应用于商业产品中,但QDs以其独特的零维态密度和类似原子的退变性,成为一种很有前途的替代品。通过自注入锁定,III-V族激光器与氮化硅(SiN)微谐振器的异质集成增加了内在优势。这些优势包括结构紧凑、大批量生产的潜力以及更高的稳定性。与在原生平台上生长的III-V族激光器相比,该技术具有更出色的线宽收窄性能。不同QD层(a)和QD密度(b)下III-V族/SiN族QD激光器的线宽FWHM与注入电流密度的函数关系。资料来源:EmadAlkhazraji、WengW.Chow、FrédéricGrillot、JohnE.Bowers和YatingWan。探索量子阱和量子点器件的新研究最近发表在《光科学与应用》杂志上的一项研究对复合腔激光器有源介质的设计进行了参数调查。这项研究由沙特阿拉伯阿卜杜拉国王科技大学(KAUST)集成光子学实验室的万雅婷教授、美国阿尔伯克基桑迪亚国家实验室的WengW.Chow博士、法国巴黎综合理工学院巴黎电讯LTCI的FrédéricGrillot教授和美国加州大学圣巴巴拉分校的JohnBowers教授共同领导。研究小组重点研究了载流子量子约束对锁定复合腔器件的动态和光谱特性的影响。他们特别强调了将III-V族QW或QD分布反馈(DFB)激光器与SiN微孔谐振器集成时发射光谱的细化或线宽的缩小。该研究论文的第一作者EmadAlkhazraji阐明了改进背后的原理。Alkhazraji解释说:"当适当调整并锁定到一个或多个微孔的whisperinggallery模式时,瑞利后向散射形式的光反馈可使激光二极管的激光线宽大幅降低到Hz级。"图像显示了4D设计空间和每个器件的最佳点。资料来源:EmadAlkhazraji、WengW.Chow、FrédéricGrillot、JohnE.Bowers和YatingWan。研究结果和对未来设计的启示通过遗传算法对QW和QD器件进行多目标设计-操作优化分析,研究人员结束了参数调查,然后采用多决策算法确定每个优化变量的最佳设计操作点。"这些发现为更全面的参数研究提供了指导,可以为工程设计提供及时的结果,"万教授总结道。该研究强调了激光二极管技术领域的改进和进一步发展潜力。...PC版:https://www.cnbeta.com.tw/articles/soft/1371359.htm手机版:https://m.cnbeta.com.tw/view/1371359.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人