乌克兰研究人员参与取得聚变发电成果 微波加热等离子体迎来突破性进展

乌克兰研究人员参与取得聚变发电成果微波加热等离子体迎来突破性进展HeliotronJ装置的结构。资料来源:京都大学/HeliotronJ小组质体必须保持在正确的密度、温度和时间,才能发生核聚变。包括马克斯-普朗克等离子体物理研究所在内的研究团队已经确定了等离子体生产的三个关键步骤,并利用HeliotronJ设备研究核聚变等离子体放电。他们发现,在不对准磁场的情况下施加2.45GHz微波会产生密集的等离子体,这有可能简化未来的聚变研究。主要作者YuriiVictorovichKovtun,尽管在目前的俄乌战争中被迫撤离哈尔科夫物理技术研究所,但仍继续与京都大学合作,利用微波创造稳定的等离子体。让等离子体恰到好处是利用核聚变所承诺的大量能量的障碍之一。等离子体--离子和电子的汤--必须保持适当的密度、温度和时间,使原子核融合在一起,以达到预期的能量释放。一种配方涉及使用大型的、带有强大磁铁的甜甜圈形状的装置,这些磁铁包含等离子体,同时仔细排列的微波发生器加热原子混合物。物理学聚变能量波的概念聚变能源是一个迷人的、有前途的研究领域,它试图利用为太阳提供动力的相同过程来生产清洁、丰富和几乎无限的能源。现在,京都大学先进能源研究所与哈尔科夫研究所和马克斯-普朗克等离子体物理研究所合作,利用低频率的微波功率,创造出具有聚变适宜密度的等离子体。研究小组已经确定了等离子体生产的三个重要步骤:闪电般的气体分解、初步等离子体生产和稳态等离子体。这项研究正在使用HeliotronJ进行,这是位于京都大学南部宇治校区的先进能源研究所的实验性聚变等离子体设备的最新迭代。小组负责人长崎和信解释说:"最初,我们没有想到在HeliotronJ中会出现这些现象,但惊讶地发现等离子体的形成没有回旋共振。"在几十年的经验基础上,长崎的团队正在探索HeliotronJ中的聚变等离子体放电现象。该小组将2.45GHz的微波功率的强烈爆发注入进料气体。家庭中的微波炉在这个相同的频率下工作,但HeliotronJ的功率大约是10倍,而且集中在几个气体原子上。"出乎意料的是,我们发现在没有对准HeliotronJ的磁场的情况下爆破微波会产生一种放电,将电子从其原子上撕下来,并产生一种特别密集的等离子体,"长崎惊叹道。"我们非常感谢我们的同事能够继续支持这项研究,关于这种利用微波放电产生等离子体的方法的发现可能会简化未来的聚变研究。"...PC版:https://www.cnbeta.com.tw/articles/soft/1352969.htm手机版:https://m.cnbeta.com.tw/view/1352969.htm

相关推荐

封面图片

研究人员找到控制一亿度核聚变等离子体热量的方法

研究人员找到控制一亿度核聚变等离子体热量的方法京都大学的研究人员建立了一个模型,用于预测和控制聚变反应堆中氢分子的旋转温度。这一发现有助于冷却等离子体和优化聚变装置的性能,为未来聚变发电的进步提供了启示。托卡马克--甜甜圈形核聚变反应堆中封闭的极高温等离子体通常高达1亿摄氏度,会对这些巨型装置的封闭壁造成损坏。研究人员在装置壁附近注入氢气和惰性气体,通过辐射和重组冷却等离子体,这与电离作用正好相反。减轻热负荷对于延长未来聚变装置的使用寿命至关重要。了解和预测氢分子在器壁附近的振动和旋转温度过程可以增强重组,但有效的策略仍然难以捉摸。在三个不同的托卡马克中测量了从面向等离子体表面解吸的氢分子的旋转温度;还评估了等离子体中碰撞辐射过程导致的温度升高。图片来源:KyotoUGlobalComms/TaiichiShikama京都大学领导的一个国际研究小组最近找到了一种方法,可以解释在日本和美国的三个不同实验聚变装置中测得的旋转温度。他们的模型评估了氢分子的表面相互作用和电子-质子碰撞。模型的通讯作者、京都大学工学研究院的NaoYoneda补充说:"在我们的模型中,我们针对低能级的旋转温度进行了评估,使我们能够解释几个实验装置的测量结果。"通过预测和控制壁面附近的旋转温度,研究小组能够驱散等离子体热通量并优化装置的工作条件。"我们仍然需要了解氢的旋转振动激发机制,"Yoneda说,"但我们很高兴,我们模型的多功能性也使我们能够再现文献中报告的测量旋转温度。"...PC版:https://www.cnbeta.com.tw/articles/soft/1379355.htm手机版:https://m.cnbeta.com.tw/view/1379355.htm

封面图片

科学简单点:什么是等离子体?

科学简单点:什么是等离子体?在等离子体中,一些电子从中性原子(质子和电子数目相等,因此带中性电荷的原子)中分离出来,成为自由电子。由此产生的自由电子使等离子体不同于其他物质状态,在其他物质状态下,电子仍然紧紧地与原子核结合在一起。当等离子体中的原子与带负电荷的电子分离时,它们就不再带有中性电荷。相反,原子变成了离子--带正电的粒子。因此,等离子体是一种由带正电荷的离子和带负电荷的电子组成的电离状态。极光是由地球大气等离子体中的粒子碰撞形成的。资料来源:弗兰克-奥尔森原子中的电子能够分离并形成等离子体有几个原因。在实验室实验中,科学家可以用高压电、激光或电磁场轰击原子,从而形成等离子体。在太空中,高能光子(包括伽马射线)撞击原子也会形成等离子体。在太空中,当重力使压力剧增,从而使气体过热时,也会形成等离子体。高温使原子相互碰撞,导致电子从原子中分离,形成等离子体和恒星的雏形。气体过热产生等离子体的过程表明,气体和等离子体之间的关系类似于液体是固体的加热形式。这种类比并不总是正确的。首先,与气体不同,等离子体可以导电。此外,在气体中,所有粒子的行为方式都相似。然而,在等离子体中,电子和离子的行为和相互作用方式非常复杂,从而产生了波和不稳定性。等离子体有多种类型。宇宙中的大多数等离子体被研究人员称为高温等离子体。在这些高温等离子体中,温度可以超过华氏1万度,所有原子都可以完全电离。低温等离子体则不同。原子只是部分电离,温度低得惊人,甚至只有室温。另一种不寻常的等离子体是高能量密度等离子体,科学家在实验室中制造这种等离子体来研究它们的不寻常特性。总结:有一种闪电--球状闪电--是等离子体。从马克斯-普朗克研究所了解更多信息。极光也是由等离子体造成的。在本科学集锦中了解更多信息。封闭等离子体是设计聚变托卡马克和恒星器设备的重要步骤,这些设备最终可能为我们提供聚变动力。高能量密度等离子体科学实现了实验室条件下的聚变点火。研究等离子体有助于科学家了解物质。这也有助于他们向聚变能源的目标迈进。能源部(DOE)科学办公室通过聚变能源科学和核物理计划支持等离子体研究。能源部资助的等离子体研究还改进了从手机、电脑到汽车等各种产品中的半导体制造。等离子体方面的专业知识帮助能源部国家实验室的研究人员开发出了逐原子控制半导体制造的方法。编译来源:ScitechDaily相关文章:科学简单点:什么是超级计算?科学简单点:什么是人工智能?科学简单点:什么是量子力学?科学简单点:什么是水力发电?科学简单点:什么是核能?科学简单点:什么是气候复原力?科学简单点:什么是纳米科学?科学简单点:什么是暗物质和暗能量?科学简单点:什么是X射线光源?科学简单点:什么是自主发现?科学简单点:什么是氢能源?科学简单点:什么是“关键材料”美国政府定义了多少种?...PC版:https://www.cnbeta.com.tw/articles/soft/1432055.htm手机版:https://m.cnbeta.com.tw/view/1432055.htm

封面图片

研究人员在聚变燃烧的等离子体中发现奇怪的高能量行为

研究人员在聚变燃烧的等离子体中发现奇怪的高能量行为自2009年以来,国家点火设施(NIF)的科学家们一直在追求核聚变,使用192个激光器阵列向一个约为球形轴承大小的燃料囊发射高能脉冲。这粒燃料是由氘和氚组成的,用突如其来的强热将其湮灭,使独立的原子融合成氦,在此过程中释放出巨大的能量。在一个理想的世界里,核聚变研究人员将让这些核聚变反应作为热源,摒弃激光,让他们相遇为自己提供能量,成为一个自我维持的能源。今年1月,NIF的科学家们发表了研究报告,其中他们详细介绍了实现这一梦想的重要步骤,调整了他们的技术以创造一个自我持续的"燃烧等离子体"。尽管燃烧的等离子体只存在了几纳秒,但这项研究是该领域的首创,也是核聚变研究这一分支--即惯性约束核聚变(ICF)的重要进展。对这种燃烧的等离子体的新分析现在显示出它以一种意想不到的方式表现出来,其中的离子显示出比模型预测的能量更高。新论文的主要作者阿拉斯泰尔-摩尔说:"这意味着经历核聚变的离子在最高性能的轰击中带来了比预期更多的能量,这是用于模拟ICF内爆的正常辐射流体力学代码所不能预测的。"科学家们将离子出乎意料的高能行为比作多普勒效应,就像你可能听到警笛在汽车接近、经过,然后驶向远方时的变化一样。该团队说,需要更先进的模拟来正确地充实起作用的过程,但这样做可以为今后的聚变设施设计提供关键的见解。该团队写道:"了解这种偏离流体力学行为的原因可能对实现稳健和可重复的点火很重要。"这项研究发表在《自然-物理》杂志上。了解更多:https://www.nature.com/articles/s41567-022-01809-3...PC版:https://www.cnbeta.com.tw/articles/soft/1332839.htm手机版:https://m.cnbeta.com.tw/view/1332839.htm

封面图片

世界最大核聚变发电装置 ITER 已经组装完成 但首次等离子体产生将推迟八年

世界最大核聚变发电装置ITER已经组装完成但首次等离子体产生将推迟八年由35个国家共同发起、旨在利用核聚变生产电力的国际热核聚变实验反应堆(ITER)项目宣布,其已经完成了核心的托卡马克装置组装,但其首次运行时间将推迟至少八年。ITER总干事PietroBarabaschi昨天概述了一个新的项目基线(),以取代2016年的版本。旧文件预计2025年将产出“第一团等离子体”,现在这个时间点已经推迟到了2033年。而原计划中2033年将开始进行的“氘氚聚变”实验则推迟到了2039年。与此同时,该项目将需要额外的54亿美元才能实现运行。——

封面图片

世界上规模最大的核聚变反应堆欧洲联合环状反应堆(JET)中的聚变反应在等离子体放电的5秒阶段以中子的形式释放出总共59兆焦耳的能

世界上规模最大的核聚变反应堆欧洲联合环状反应堆(JET)中的聚变反应在等离子体放电的5秒阶段以中子的形式释放出总共59兆焦耳的能量。(EUROfusion)、英国原子能管理局(UKAEA)和国际热核聚变实验堆(ITER)9日联合召开新闻发布会公布了上述消息。打破了JET曾在1997年产生约22兆焦耳聚变能量的等离子体的世界能源纪录。为了过渡到国际大规模聚变实验(ITER)计划,研究人员此次进行的是氘氚混合燃料聚变实验。同时,为了使JET实验尽可能接近未来的热核聚变实验堆条件,他们用铍和钨的混合物而不是碳覆盖等离子体容器壁,因为金属钨比碳更耐腐蚀,而且不会像碳一样过多地与燃料结合。此次实验在比太阳中心温度高10倍的条件下,产生的聚变能量达到了创纪录水平。ITER设施目前正在法国南部的卡达拉奇建设,预计将使用氘和氚混合燃料,计划实现产出能量10倍于输入能量(聚变增益)。要想产生净能量,即输出能量是加热等离子体所需能量的两倍这一目标,在卡达拉奇ITER设施“上线”之前是不可能实现的。因此,这次实验是在类ITER条件下创造的世界纪录。德国马克斯·普朗克等离子体物理学研究所科学主任西比勒·君特教授表示:“JET的最新实验是向ITER最终目标迈出的重要一步。”()

封面图片

上海制造全球首台全高温超导托卡马克装置工程可行性获验证 “洪荒 70” 实现等离子体放电

上海制造全球首台全高温超导托卡马克装置工程可行性获验证“洪荒70”实现等离子体放电昨天,致力于可控核聚变能源商业化的上海公司能量奇点宣布,其设计研发建造的“洪荒70”装置成功实现等离子体放电。这意味着,全球首台全高温超导托卡马克装置的工程可行性获得验证。可控核聚变也叫“人造太阳”,被认为是人类的终极能源。上海于2022年9月率先发布未来智能、未来能源等五大未来产业高地行动方案,可控核聚变就属于未来能源范畴。(解放日报)

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人