超导连接:晶体条带和量子电子的行为

超导连接:晶体条带和量子电子的行为大多数材料中的电子之间的相互作用非常弱。但是,物理学家经常在电子相互作用强烈的材料中观察到有趣的特性。在这些材料中,电子经常集体表现为粒子,产生了"准粒子"。理化学研究所新兴物质科学中心的克里斯托弗-巴特勒说:"一个晶体可以被认为是一个具有不同物理定律的替代宇宙,允许不同的基本粒子生活在那里。"巴特勒及其同事研究了一种晶体,其中一层镍原子被安排在一个方形晶格中,就像一个棋盘。单个电子的质量很小,但在这种晶体中,它们看起来是无质量的准粒子。研究小组开始使用扫描隧道显微镜来研究这种奇怪的效果,但事实证明这具有挑战性。这台核桃大小的显微镜被安置在一个真空室里,周围是一屋子的设备,这些设备创造了与月球表面相当的低温和超低压力。巴特勒说:"为了检验这些晶体的原始表面,我们试图裂开一个小片,就像地质学家那样。但是我们必须在真空中做这件事,而且这些晶体非常脆,在这种环境下容易爆炸变成灰尘。"经过无数次的尝试,他们成功了,用显微镜扫描片状物,用一个类似唱机的小针,在它上面加电压,改变电压使他们能够探测到不同的特征。理化学研究所的物理学家观察到,电子(顶部两层)在镍晶体的方形原子晶格(底部一层)上方形成条纹状排列。研究小组证实,镍原子是以棋盘式的排列方式排列的。但令他们惊讶的是,电子打破了这种模式,令其以条纹的形式排列(如图)。这就是所谓的非对称性--系统中的相互作用使电子显示的对称性低于底层材料。巴特勒将这一发现比作站在池塘边扔进一个小石子。他说:"你会期望看到圆形的涟漪,所以如果你看到涟漪出现在平行线上,你就会知道发生了一些奇怪的事情。它需要一个解释"。这样的实验将帮助物理学家测试关于具有许多粒子相互作用的量子系统行为的不同拟议理论,例如高温超导体。例如,这些新结果符合日本名古屋大学该研究的共同作者所提出的"密度波"框架的预测。"许多相互作用的电子的行为即使用超级计算机也很难预测,"巴特勒说。"但至少我们可以在显微镜下观察它们在做什么。"...PC版:https://www.cnbeta.com.tw/articles/soft/1354243.htm手机版:https://m.cnbeta.com.tw/view/1354243.htm

相关推荐

封面图片

铋元素超薄晶体开启电子和量子计算的新可能

铋元素超薄晶体开启电子和量子计算的新可能"铋因其低熔点和独特的电子特性,一百多年来一直令科学家们着迷,"加州大学欧文分校物理学和天文学助理教授、该研究的共同作者哈维尔-桑切斯-山岸(JavierSanchez-Yamagishi)说。"我们开发了一种新方法来制造铋等材料的极薄晶体,并在此过程中揭示了金属表面隐藏的电子行为。"研究小组制作的铋片只有几纳米厚。桑切斯-山岸解释了理论家们是如何预测铋含有特殊的电子状态,使其在电流流过时具有磁性--这对于基于电子自旋磁性的量子电子设备来说是至关重要的。研究小组观察到的隐藏行为之一是源自晶体表面的所谓量子振荡。"量子振荡源于电子在磁场中的运动,"加州大学欧文分校物理学和天文学博士候选人、论文主要作者之一莱斯-陈(LaisiChen)说。"如果电子能围绕磁场完成一个完整的轨道,它就能表现出对电子性能非常重要的效应。量子振荡于20世纪30年代首次在铋中被发现,但从未在纳米级薄铋晶体中出现过"。桑切斯-山岸实验室的物理学博士候选人艾米-吴(AmyWu)把研究小组的新方法比作压玉米饼机。吴解释说,为了制作超薄铋片,他们必须将铋挤压在两块热板之间。为了让铋片变得像现在这样平整,他们必须使用在原子层面上非常光滑的成型板,这意味着表面没有微小的凹痕或其他瑕疵。吴说:"然后,我们制作了一种Quesadilla或Panini(意大利美食),铋是芝士馅料,玉米饼则是原子平整的表面。"桑切斯-山岸说:"有那么一个紧张的时刻,我们花了一年多的时间制作这些美丽的晶体,但我们不知道它的电学特性是否会非同寻常。但是,当我们在实验室里冷却设备时,我们惊讶地观察到了量子振荡,这在以前的铋薄膜中是从未见过的。压缩是一种非常常见的制造技术,用于制造铝箔等普通家用材料,但并不常用于制造电脑中的电子材料。我们相信,我们的方法将推广到其他材料,如锡、硒、碲和相关的低熔点合金,这对探索未来的柔性电子电路可能很有意义。"下一步,该团队希望探索其他方法,利用压缩和注塑成型方法制造下一代手机或平板电脑芯片。陈说:"我们的新团队成员为这个项目带来了令人兴奋的想法,我们正在研究新技术,以进一步控制生长的铋晶体的形状和厚度。这将简化我们制造设备的方法,并使其离大规模生产更近一步。"编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1432151.htm手机版:https://m.cnbeta.com.tw/view/1432151.htm

封面图片

量子物质突破:研究人员发现独特的量子行为

量子物质突破:研究人员发现独特的量子行为一个科学家小组将冷原子气体的操纵潜力提高了一倍,创造出了一种新型物质。这一突破可以通过激发特制气体中的"密度波"来推动量子技术的发展。密度波插图。由HaraldRitsch绘制。资料来源:因斯布鲁克大学/EPFL过去,冷原子气体因能够"编程"原子之间的相互作用而闻名于世,洛桑联邦理工学院的让-菲利普-布兰特教授(Jean-PhilippeBrantut)说。"我们的实验让这种能力翻了一番!"他们与因斯布鲁克大学的赫尔穆特-里奇(HelmutRitsch)教授小组合作,取得了一项突破性进展,这不仅会影响量子研究,还会影响未来的量子技术。长期以来,科学家们一直对了解材料如何自组织成晶体等复杂结构感兴趣。在量子物理学这个常常令人费解的世界里,粒子的这种自组织表现为"密度波",即粒子排列成一种有规律的、重复的模式或"秩序";就像一群穿着不同颜色衬衫的人站成一排,但没有两个穿着相同颜色衬衫的人站在一起。在金属、绝缘体和超导体等多种材料中都能观察到密度波。然而,对它们的研究一直很困难,尤其是当这种秩序(波中粒子的模式)与其他类型的组织(如超流体--一种允许粒子无阻力流动的特性)同时出现时。值得注意的是,超流动性并不仅仅是一种理论上的好奇心;它对于开发具有独特性质的材料(例如高温超导性,它可以带来更高效的能量传输和存储)或建造量子计算机具有巨大的意义。为了探索这种相互作用,布兰特和他的同事们创造了一种"单元费米气体",这是一种由冷却到极低温度的锂原子组成的稀薄气体,其中的原子经常相互碰撞。然后,研究人员将这种气体置于光腔中,光腔是一种用于将光线长时间限制在狭小空间内的装置。光腔由两面反射镜组成,能将射入的光线在两面反射镜之间来回反射数千次,从而使光粒子(光子)在光腔内积聚。在这项研究中,研究人员利用空腔使费米气体中的粒子发生远距离相互作用:第一个原子会发射一个光子,光子反弹到镜子上,然后被气体中的第二个原子重新吸收,无论它与第一个原子的距离有多远。当发射和重新吸收的光子足够多时(在实验中很容易调整),原子就会集体组织成密度波模式。布兰特说:"原子在费米气体中直接相互碰撞,同时又在很远的距离上交换光子,这是一种新型物质,其中的相互作用是极端的。我们希望,我们在那里看到的东西将增进我们对物理学中遇到的一些最复杂材料的理解。"...PC版:https://www.cnbeta.com.tw/articles/soft/1372485.htm手机版:https://m.cnbeta.com.tw/view/1372485.htm

封面图片

日本将收紧对更多芯片和量子技术的出口管制

日本将收紧对更多芯片和量子技术的出口管制日本表示计划扩大对与半导体和量子计算相关的四种技术的出口限制,这是全球控制战略技术流动的最新举措。日本此举将影响用于分析纳米粒子图像的扫描电子显微镜、三星电子为改进半导体设计而采用的全环绕栅极晶体管技术。日本还将要求出口用于量子计算机的低温CMOS电路及出口量子计算机本身须获得许可。日本经济产业省周五表示,此举旨在更好地监管有军用用途的零部件出口,并与全球其他国家的类似行动保持一致。它表示,在公众意见征询期于5月25日结束后,相关措施最早将在7月生效。

封面图片

研究人员利用电子和空穴自旋实现了精确的量子比特控制和相互作用

研究人员利用电子和空穴自旋实现了精确的量子比特控制和相互作用巴塞尔大学在量子比特技术方面取得的进展为可扩展量子计算带来了希望,它利用电子和空穴自旋实现了精确的量子比特控制和相互作用。全世界的研究人员都在探索各种量子比特技术,对实用量子计算机的追求正如火如荼地进行着。尽管做出了大量努力,但对于哪种类型的量子比特最能最大限度地发挥量子信息科学的潜力,人们仍未达成共识。量子比特是量子计算机的基础。它们负责处理、传输和存储数据。有效的量子位必须可靠地存储和快速处理信息。这就要求外部系统能够准确控制大量量子比特之间稳定、迅速的相互作用。当今最先进的量子计算机只有几百个量子比特。这就限制了它们执行传统计算机已经能够完成的计算,而且往往能更高效地完成。要想推动量子计算的发展,研究人员必须找到一种在单个芯片上容纳数百万量子比特的方法。电子和空穴为了解决数千个量子比特的排列和连接问题,巴塞尔大学和NCCRSPIN的研究人员依靠一种利用电子或空穴自旋(固有角动量)的量子比特。空穴本质上是半导体中缺失的电子。空穴和电子都具有自旋,可采用两种状态之一:向上或向下,类似于经典比特中的0和1。与电子自旋相比,空穴自旋的优势在于它可以完全由电子控制,无需在芯片上安装微型磁铁等额外元件。两个相互作用的空穴自旋量子比特。当一个空穴(洋红色/黄色)从一个位点隧穿到另一个位点时,它的自旋(箭头)会因所谓的自旋轨道耦合而旋转,从而导致周围气泡所描述的各向异性相互作用。资料来源:NCCRSPIN2022年,巴塞尔物理学家证明,现有电子设备中的空穴自旋可以被捕获并用作量子比特。这些"FinFET"(鳍式场效应晶体管)内置于现代智能手机中,并通过广泛的工业流程生产出来。现在,安德烈亚斯-库尔曼(AndreasKuhlmann)博士领导的团队首次成功地在这种装置中实现了两个量子比特之间可控的相互作用。量子计算机需要"量子门"来执行计算。量子门"代表着操纵量子比特并将它们相互耦合的操作。研究人员在《自然-物理》杂志上报告说,他们能够将两个量子比特耦合起来,并根据其中一个量子比特的自旋状态,使另一个量子比特的自旋发生受控翻转--这就是所谓的受控自旋翻转。"孔自旋使我们能够创建既快速又高保真的双量子比特门。"库尔曼说:"现在,这一原理还使我们有可能将更多的量子位对耦合在一起。"两个自旋量子比特的耦合基于它们之间的交换相互作用,这种相互作用发生在两个静电相互作用的无差别粒子之间。令人惊奇的是,空穴的交换能不仅在电学上是可控的,而且具有很强的各向异性。这是自旋轨道耦合的结果,意味着空穴的自旋状态受其空间运动的影响。为了在模型中描述这一观察结果,巴塞尔大学和NCCRSPIN的实验物理学家和理论物理学家联手合作。库尔曼说:"各向异性使得双量子比特门成为可能,而无需在速度和保真度之间进行通常的权衡。基于空穴自旋的量子比特不仅可以利用硅芯片久经考验的制造工艺,还具有高度的可扩展性,并在实验中被证明是快速和稳健的。这项研究强调,这种方法在开发大规模量子计算机的竞赛中大有可为。"编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1432321.htm手机版:https://m.cnbeta.com.tw/view/1432321.htm

封面图片

钻石的隐藏潜力:物理学家释放不完美晶体的量子能量

钻石的隐藏潜力:物理学家释放不完美晶体的量子能量外场驱动钻石内的量子粒子,创造出长寿命量子系统。资料来源:圣路易斯华盛顿大学该论文的共同作者包括物理学教授凯特-默奇(KaterMurch)、博士生何光辉、龚若天(Ruotian(Reginald)Gong)和刘中原。他们的工作得到了量子跃迁中心(CenterforQuantumLeaps)的部分支持。量子跃迁中心是艺术与科学战略计划的一个标志性倡议,旨在将量子见解和技术应用于物理学、生物医学和生命科学、药物发现以及其他意义深远的领域。研究人员用氮原子轰击钻石,使其发生转变。其中一些氮原子会移位碳原子,从而在原本完美的晶体中产生缺陷。由此产生的空隙中充满了电子,这些电子具有自旋和磁性,其量子特性可被测量和操纵,应用范围十分广泛。正如Zu和他的团队之前通过对硼的研究揭示的那样,这种缺陷有可能被用作量子传感器,对周围环境和彼此间的环境做出反应。在新的研究中,研究人员关注的是另一种可能性:利用不完美的晶体来研究无比复杂的量子世界。经典计算机(包括最先进的超级计算机)不足以模拟量子系统,即使是只有十几个量子粒子的系统。这是因为每增加一个粒子,量子空间的维度就会呈指数增长。但新研究表明,使用可控量子系统直接模拟复杂的量子动力学是可行的。Zu说:"我们精心设计我们的量子系统,创建一个模拟程序并让它运行。最后,我们观察结果。这是使用经典计算机几乎不可能解决的问题。"研究小组在这一领域取得的进展将有助于研究多体量子物理学中一些最令人兴奋的方面,包括实现物质的新阶段和预测复杂量子系统的突发现象。在最新的研究中,Zu和他的团队能够让他们的系统保持稳定长达10毫秒,这在量子世界中是很长的一段时间。值得注意的是,与其他在超低温条件下运行的量子模拟系统不同,他们的钻石系统是在室温条件下运行的。保持量子系统完好无损的关键之一是防止热化,即系统吸收大量能量后,所有缺陷都会失去其独特的量子特征,最终看起来一模一样。研究小组发现,他们可以通过快速驱动系统,使其来不及吸收能量,从而推迟这一结果的发生。这使得系统处于相对稳定的"预热"状态。这种基于钻石的新系统使物理学家能够同时研究多个量子区域的相互作用。它还为制造灵敏度越来越高的量子传感器提供了可能。"量子系统存在的时间越长,灵敏度就越高,"Zu说。Zu和他的团队目前正在与量子跃迁中心的其他华盛顿大学科学家合作,以获得跨学科的新见解。在艺术与科学领域,Zu正与物理学副教授ErikHenriksen合作,以提高传感器的性能。他还计划利用它们来更好地理解物理学助理教授盛然实验室创造的量子材料。他还与地球、环境和行星科学教授菲利普-斯基默(PhilipSkemer)合作,从原子层面观察岩石样本中的磁场;并与物理学助理教授尚卡尔-穆克吉(ShankarMukherji)合作,对活生物细胞中的热力学进行成像。...PC版:https://www.cnbeta.com.tw/articles/soft/1388713.htm手机版:https://m.cnbeta.com.tw/view/1388713.htm

封面图片

麻省理工学院物理学家首次在三维晶体中捕获电子 有助于解开超导之谜

麻省理工学院物理学家首次在三维晶体中捕获电子有助于解开超导之谜麻省理工学院的物理学家在纯净的晶体中捕获了电子,标志着在三维材料中首次实现了电子平带。这种罕见的电子状态得益于一种特殊的立方体原子排列(如图),这种排列类似于日本的"编织篮"艺术。该成果为科学家探索三维材料中的稀有电子状态提供了一种新的途径。图片来源:研究人员提供发现三维平带现在,麻省理工学院的物理学家成功地将电子困在了纯净的晶体中。这是科学家首次在三维材料中实现电子平带。通过一些化学操作,研究人员还表明他们可以将晶体转化为超导体--一种零电阻导电的材料。这些成果为探索三维材料中的超导性和其他奇异电子状态打开了大门。这种罕见的电子状态得益于一种特殊的立方体原子排列(如图),这种排列类似于日本的"Kagome"编织篮艺术。图片来源:研究人员提供由于晶体的原子几何结构,电子被困状态成为可能。物理学家合成的这种晶体的原子排列类似于日本编织艺术"kagome"中的编织图案。研究人员发现,在这种特定的几何结构中,电子不是在原子间跳跃,而是被"关在笼子里",固定在同一能带上。潜在应用和研究动机研究人员说,这种平带状态几乎可以用任何原子组合来实现--只要它们以这种卡戈米启发的三维几何形状排列。这些成果于11月8日发表在《自然》(Nature)杂志上,为科学家探索三维材料中的稀有电子态提供了一种新方法。有朝一日,这些材料可能会被优化,以实现超高效电力线、超级计算量子比特以及更快、更智能的电子设备。研究报告的作者、物理学副教授约瑟夫-格切尔斯基(JosephCheckelsky)说:"既然我们知道可以用这种几何形状制造出平面带,我们就有很大的动力去研究其他结构,这些结构可能具有其他新的物理特性,可以成为新技术的平台。"Checkelsky在麻省理工学院的共同作者包括:研究生JoshuaWakefield、MinguKang、PaulNeves和博士后DongjinOh(他们是共同第一作者);研究生TejLamichhane和AlanChen;博士后ShiangFang和FrankZhao;本科生RyanTigue;核科学与工程学副教授李明达、物理学副教授里卡多-科明(他与查尔斯基合作指导了这项研究)以及其他多个实验室和机构的合作者。设置三维陷阱近年来,物理学家已经成功地在二维材料中捕获电子并确认其电子平带状态。但科学家们发现,被困在二维中的电子很容易从三维中逃逸出来,这使得平带态难以在二维中维持。在他们的新研究中,Checkelsky、Comin和他们的同事希望在三维材料中实现平带,这样电子就会被困在所有三个维度中,任何奇异的电子状态都能得到更稳定的维持。他们认为,"Kagome"可能会在其中发挥作用。在之前的工作中,科学家们观察到二维原子晶格中的电子被捕获,这种晶格类似于一些可果美的图案。当原子排列成相互连接、共用边角的三角形图案时,电子被限制在三角形之间的六边形空间内,而不是在晶格中跳跃。但是,和其他研究人员一样,研究人员发现电子可以向上逸出晶格,穿过三维空间。研究小组想知道由类似晶格组成的三维结构能否将电子封闭起来?他们在材料结构数据库中寻找答案,发现了一种原子的特定几何构型,一般被归类为火成岩--一种原子几何高度对称的矿物。火成岩的三维原子结构形成了一个重复的立方体图案,每个立方体的表面都像一个Kagome状的晶格。他们发现,从理论上讲,这种几何结构可以有效地将电子俘获在每个立方体中。为了验证这一假设,研究人员在实验室中合成了一种烧绿石晶体。"这与自然界制造晶体的方式并无二致,"Checkelsky解释说。"我们把某些元素放在一起--在本例中是钙和镍--在极高的温度下熔化它们,然后冷却,原子本身就会排列成这种晶体状的Kagome构造。"随后,他们测量了晶体中单个电子的能量,看它们是否确实属于同一平坦的能量带。要做到这一点,研究人员通常要进行光发射实验,在实验中,他们将单个光子照射到样品上,进而发射出单个电子。然后,探测器可以精确测量单个电子的能量。科学家利用光发射来确认各种二维材料中的平带状态。由于这些材料在物理上是平面的、二维的,因此使用标准激光进行测量相对简单。但对于三维材料来说,这项任务更具挑战性。科明解释说:"这个实验通常需要一个非常平整的表面。但如果你观察一下这些三维材料的表面,它们就像落基山脉一样,呈现出非常波状的地貌。在这些材料上进行实验非常具有挑战性,这也是没有人证明它们能承载被困电子的部分原因"。研究小组利用角度分辨光发射光谱(ARPES)清除了这一障碍,这种超聚焦光束能够瞄准凹凸不平的三维表面上的特定位置,并测量这些位置上的单个电子能量。这就像直升机在非常小的垫子上着陆一样,在岩石上到处都是。利用ARPES,研究小组在大约半小时内测量了合成晶体样品上数千个电子的能量。他们发现,绝大多数晶体中的电子表现出完全相同的能量,这证实了三维材料的平带状态。迈向超导为了了解他们能否操纵配位电子进入某种奇特的电子状态,研究人员合成了相同的晶体几何形状,这次用铑和钌原子代替了镍原子。根据纸上计算,研究人员认为这种化学交换应该将电子的平带转移到零能--一种自动导致超导的状态。而事实上,他们发现,当他们用略微不同的元素组合,在相同的卡戈米式三维几何中合成出一种新晶体时,晶体的电子呈现出平带,这次是超导状态。科明说:"这为我们思考如何找到新的、有趣的量子材料提供了一种新的范式。我们发现,有了这种可以捕获电子的原子排列的特殊成分,我们总能找到这些平带。这不仅仅是运气好。从这一点出发,我们面临的挑战是如何进行优化,以实现平带材料的承诺,从而有可能在更高温度下维持超导性。"...PC版:https://www.cnbeta.com.tw/articles/soft/1395965.htm手机版:https://m.cnbeta.com.tw/view/1395965.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人