实验性植入系统可通过巧妙地电击肌肉来阻止不必要的震颤

实验性植入系统可通过巧妙地电击肌肉来阻止不必要的震颤通过导管注射到肌肉组织中,生物兼容的铂铱/硅胶植入物大约有3厘米长(1.2英寸)和1毫米厚。每个装置都配备了两个电极,两端各一个。其中一个电极作为传感器,而另一个电极则作为执行器。系统示意图Equinor开放数据许可证身体外部的电极以无线方式向底层植入物传输电力。这些外部电极被整合到穿在手臂或腿上靠近植入部位的材料带中,它们被硬连接到一个小型可穿戴控制器/电池组。一旦其中一个植入物检测到不自主肌肉震颤的发生,它就会将数据(通过电脉冲)转发给系统的外部组件。在分析该数据时,控制器会触发内部电极以刺激肌肉。尽管输送的电流不足以直接影响肌肉,但它会被人体的中枢神经系统检测到。诱导的电活动将干扰来自神经系统的不需要的信号,导致后者停止发送这些信号。在迄今为止进行的人体实验中,该系统似乎运作良好。项目合作伙伴之一的德国弗劳恩霍夫生物医学工程研究所的AndreasSchneider-Ickert说:"初步试验表明,为病人提供一到两个小时的刺激就足以在较长时间内减少震颤症状。"希望该技术有朝一日也能被纳入动力辅助外骨骼,它将根据检测到的肢体神经冲动来移动手臂或腿。...PC版:https://www.cnbeta.com.tw/articles/soft/1357857.htm手机版:https://m.cnbeta.com.tw/view/1357857.htm

相关推荐

封面图片

AI思维解码器+人体植入物使瘫痪12年的人重新行走

AI思维解码器+人体植入物使瘫痪12年的人重新行走周三发表在《自然》杂志上的一项中,瑞士的研究人员结合了AI思维解码器和大脑-脊柱植入物,使因摩托车事故瘫痪了12年的Gert-JanOskam重新行走。他在植入一年多后继续保留了这些能力并显示出了神经恢复迹象,即使关闭植入物他也拄着拐杖走路。研究人员首先在Oskam的头骨和脊柱中植入了电极。然后让AI观察他的大脑——当他试图移动不同身体部位时哪些部分会亮——最终将某些电极活动与特定意图相匹配。再用另一种算法连接大脑植入物和脊柱植入物,脊柱植入物向不同身体部位发送电信号从而引发运动。该算法能够解释每个肌肉收缩和放松的方向和速度的细微变化。而且,由于大脑和脊柱之间的信号每300毫秒发送一次,Oskam可以根据哪些有效,哪些无效,迅速调整他的策略。——频道:@TestFlightCN

封面图片

新的"生物杂交"神经植入物可恢复瘫痪肢体的功能

新的"生物杂交"神经植入物可恢复瘫痪肢体的功能以前使用神经植入物来恢复肢体功能的尝试大多失败,因为随着时间的推移,电极周围往往会形成疤痕组织,阻碍了设备和神经之间的连接。通过在电极和活体组织之间夹上一层由干细胞重新编程的肌肉细胞,研究人员发现,该设备与宿主的身体融为一体,并防止了疤痕组织的形成。在28天的实验过程中,细胞一直在电极上存活,这是第一次在如此长的时间内进行监测。研究人员说,通过将两种先进的神经再生疗法--细胞疗法和生物电子学--结合到一个装置中,他们可以克服两种方法的缺点,提高功能和灵敏度。虽然在用于人体之前还需要进行广泛的研究和测试,但该设备对于截肢者或那些失去肢体功能的人来说是一个很有前途的发展。该结果于2023年3月22日在《科学进展》杂志上报道。当试图扭转导致肢体丧失或肢体功能丧失的伤害时,一个巨大的挑战是神经元无法再生和重建被破坏的神经回路。共同领导这项研究的剑桥大学临床神经科学系的达米亚诺-巴罗内博士说:"例如,如果有人被截去手臂或腿部,即使物理上的肢体已经消失,但神经系统中的所有信号仍然存在。"整合假肢或恢复手臂或腿部功能的挑战是,从神经中提取信息并将其送到肢体上,以便恢复功能。"解决这个问题的一种方法是将神经植入肩部的大肌肉中,并在其上附加电极。这种方法的问题是在电极周围形成疤痕组织,加上只能从电极上提取表面信息。为了获得更好的分辨率,任何用于恢复功能的植入物都需要从电极中提取更多信息。而为了提高灵敏度,研究人员希望设计出能够在单个神经纤维或轴突的规模上工作的东西。巴罗内说:"轴突本身有微小的电压。但一旦它与肌肉细胞连接,而肌肉细胞的电压要高得多,来自肌肉细胞的信号就更容易提取。这就是你可以提高植入物的灵敏度的地方。"研究人员设计了一种生物兼容的柔性电子装置,它足够薄,可以连接到神经的末端。然后在电极上放置了一层干细胞,经过重新编程成为肌肉细胞。这是第一次以这种方式将这种被称为诱导多能干细胞的干细胞用于生物体。巴罗内说:"这些细胞给了我们很大程度的控制。我们可以告诉它们如何表现,并在整个实验过程中对它们进行检查。通过将细胞置于电子设备和活体之间,身体看不到电极,只看到细胞,所以不会产生疤痕组织。"剑桥大学的生物混合装置被植入大鼠瘫痪的前臂中。干细胞在植入前已转化为肌肉细胞,与大鼠前臂的神经结合。虽然老鼠的前臂没有恢复运动,但该设备能够从大脑中接收到控制运动的信号。如果与其余的神经或假肢相连,该装置可以帮助恢复运动。细胞层也改善了设备的功能,提高了分辨率,并允许在一个活的生物体内进行长期监测。细胞在28天的实验中存活下来:这是第一次证明细胞能在这种长时间的实验中存活下来。研究人员说,与其他试图恢复截肢者功能的方法相比,他们的方法具有多种优势。除了更容易集成和长期稳定之外,该设备足够小,其植入只需要微创手术。其他用于恢复截肢者功能的神经接口技术需要对患者的大脑皮层活动进行复杂的特定解释,以便与肌肉运动相关联,而剑桥大学开发的设备是一个高度可扩展的解决方案,因为它使用"现成的"细胞。研究人员说,除了有可能恢复失去肢体的人的功能外,他们的设备还可以通过与负责运动控制的特定轴突互动来控制假肢。共同第一作者、工程系的AmyRochford说:"这种界面可以彻底改变我们与技术互动的方式。通过将活体人体细胞与生物电子材料相结合,我们创造了一个能够以更自然和直观的方式与大脑沟通的系统,为假肢、脑机接口,甚至增强认知能力开辟了新的可能性。""这项技术代表了一种令人兴奋的神经植入的新方法,我们希望这将为有需要的病人开启新的治疗方法,"同样来自工程系的共同第一作者AlejandroCarnicer-Lombarte博士说。"共同领导这项研究的剑桥大学工程系的乔治-马利亚拉斯教授说:"这是一项高风险的工作,我很高兴它成功了。这是一种你不知道需要两年还是十年才能成功的事情,而它最终非常有效地发生了。"研究人员现在正在努力进一步优化这些设备并提高其可扩展性。在剑桥大学技术转让部门--剑桥企业的支持下,该团队已就该技术提交了专利申请。opti-ox是一种精确的细胞重编程技术,能够忠实地执行细胞中的遗传程序,使它们能够稳定地大规模生产。实验中使用的支持opti-ox的肌肉iPSC细胞系由剑桥大学Kotter实验室提供。opti-ox重编程技术由合成生物学公司bit.bio拥有。...PC版:https://www.cnbeta.com.tw/articles/soft/1351023.htm手机版:https://m.cnbeta.com.tw/view/1351023.htm

封面图片

新研发的大脑刺激装置植入物可通过呼吸动作自行供电 减少手术痛苦

新研发的大脑刺激装置植入物可通过呼吸动作自行供电减少手术痛苦深度脑刺激包括将微小的电线植入大脑的目标区域,以提供温和的电脉冲,干预纠正器官中的异常电活动。这项技术在1997年被批准用于治疗帕金森氏症震颤,但我们最近看到科学家将其用于治疗抑郁症和冲动行为,并取得了有希望的早期结果。每年约有15万名患者接受这些植入物,设备放置在胸部皮肤下,电线向上延伸至大脑。在目前的形式下,这些设备靠电池运行,每两三年就需要更换一次,而且每次更换都需要进行外科手术。我们已经看到起搏器技术的一些有趣的进展,旨在解决心律紊乱患者的这一相同问题。研究人员已经展示了实验性的起搏器,例如,可以由人体自身的肌肉,甚至是他们的心跳来驱动。康涅狄格大学的科学家们现在已将这种类型的思维应用于深层大脑刺激。他们的创造是基于三电效应,即某些材料在相互摩擦时会带电,例如气球和你的头发。该团队设计了一个深层大脑刺激装置,可以通过一个人的呼吸运动收集这种类型的能量。该植入物由多层三电材料组成,通过摩擦产生电能。这种电力为一个生物兼容的超级电容器充电,这反过来又为深层脑刺激器提供动力。研究作者EsraaElsanadidy说:"我们使用新的纳米材料创造了我们的三电纳米发电机,当它们相互接触时产生大量的能量输出,足以运行深层大脑刺激器。"研究小组在一只模拟猪器官身上测试了他们的设备,该设备由一个猪肺组成,可以通过一个泵进行充气和放气,就像吸气和呼气时一样。这种运动引起了三电材料之间的摩擦并产生了电流,刺激器能够利用这些电流每秒产生60次电脉冲。这些脉冲随后被用于刺激小鼠的体外脑组织。团队成员IslamMosa说:"这是第一个结合了所有部分的系统;高效的能量收集、能量储存和可控的大脑刺激器。我们证明了我们的自持式深层脑刺激器可以通过交替的刺激期和无刺激期来间歇性地刺激脑组织,这是一种治疗精神病的有效的深层脑刺激方法。"从这里开始,该团队计划在大型动物身上测试该系统。该研究发表在《细胞报告物理科学》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1332255.htm手机版:https://m.cnbeta.com.tw/view/1332255.htm

封面图片

脑植入物成功控制癫痫和强迫症

脑植入物成功控制癫痫和强迫症美国俄勒冈健康与科学大学(OHSU)的一名女患者成为世界上第一个受益于植入式大脑刺激器的患者。这种刺激器通过有效控制,改变了两种让她备受困扰的疾病症状:癫痫发作和强迫症。这项发表于《神经元》杂志的案例研究,描述了一种反应性神经刺激系统(RNS)的交互式编程,该系统可成功控制曾经扰乱这名患者生活的疾病。研究人员称,双程序植入设备可监视与癫痫和强迫症相关的大脑活动,它是世界上唯一可同时治疗两种疾病的设备,是独立编程的,针对癫痫的方案与强迫症的方案并不相同。(科技日报)

封面图片

世界首创:研究测试人类大脑植入物以阻止暴饮暴食

世界首创:研究测试人类大脑植入物以阻止暴饮暴食据NewAtlas报道,在一项世界首创的试点研究中,科学家们通过手术将一种装置植入两名患有暴饮暴食症的肥胖者的大脑中。该设备被设计用来检测和破坏与暴饮暴食食物渴望有关的大脑信号,有希望的结果为未来植入物能够控制各种冲动行为奠定了基础。2017年底,一项引人入胜的研究发表了,该研究表明,被称为伏隔核的大脑区域的某些活动可能与暴饮暴食等有害冲动行为有关。该研究在小鼠身上展示了大脑植入物如何能够实时检测与暴饮暴食冲动有关的活动,提供脉冲电流以阻断这些信号,并随后阻止动物过度消费食物。对人类进行深层大脑刺激的想法并不完全是新的。多年来,科学家们已经使用植入式设备来帮助治疗癫痫和帕金森病等疾病的患者。但是之前的那些设备通常依赖于预编程的电刺激,旨在更广泛地管理有严重运动控制问题的病人。这项新研究采取了一种完全不同的方法,希望通过识别和阻断高度特定的大脑活动特征来控制冲动行为。这项新研究提供了这一想法可能在人类身上发挥作用的第一个证据。研究人员在《自然医学》杂志上报告了首批使用这种大脑刺激装置的两名人类患者的经历。试点试验中的两名患者被临床诊断为暴饮暴食症,并且严重肥胖。在进行了植入大脑刺激装置的外科手术后,这两名患者被观察了大约六个月,该装置的电极瞄准了伏隔核。在最初的观察期间,研究人员专注于记录每个病人的大脑活动,目的是找出一个可能与暴饮暴食行为特别相关的独特特征。这有时包括让病人到实验室进行实验,在那里他们会看到大量的高热量食物的自助餐。在最初的观察和记录阶段之后,研究人员打开了植入物,每个植入物都被编码为个别病人自己的暴饮暴食神经触发器。该设备是一个闭环系统,这意味着它被设计为在感觉到目标大脑活动时独立地开启和关闭其电脉冲。研究人员又对这些病人进行了六个月的监测,并指出这些设备似乎运作良好,没有发现任何不良影响。两名患者都报告说暴饮暴食发作的频率明显下降,失去控制的感觉也减少了。平均而言,每位患者在接下来的六个月里还减掉了大约11磅(5公斤),没有特别的饮食干预方向。“这是一项早期的可行性研究,我们主要是评估安全性,但当然,这些病人向我们报告的强大的临床效益确实令人印象深刻,令人振奋,”该研究的高级作者CaseyHalpern说。正如Halpern所强调的,这项最初的试点研究旨在主要关注安全性和可行性。因此,现在判断这种大脑刺激方法是否真的能控制暴饮暴食还为时过早,但这些早期迹象确实表明该设备是安全的。研究人员特别指出,在寻找明显的大脑活动模式方面存在挑战,这些模式可能只与“失去控制”的暴饮暴食有关,而不是与常规饮食或渴望事件有关。经过几个月的监测,确定了某些信号,但还需要更多的工作来优化人类暴饮暴食的大脑信号的特异性。约克大学的心理健康研究员AlexandraPike没有参与这项新的研究,她强调该设...PC版:https://www.cnbeta.com/articles/soft/1310211.htm手机版:https://m.cnbeta.com/view/1310211.htm

封面图片

人类干细胞被用来制造新型生物混合神经植入物

人类干细胞被用来制造新型生物混合神经植入物两者都试图通过绕过受伤部位与现有的神经细胞相互作用,或通过用新的细胞替换受损的细胞,来恢复瘫痪或截肢的功能。然而,这也是有缺点的。就替换受损细胞而言,移植的神经元可能难以建立功能连接。如果没有健康的工作细胞与之对接,电极就不能有效地工作,这通常是由于受伤部位的疤痕组织堆积造成的。此外,目前的神经技术缺乏与负责执行不同功能的不同类型神经元对接的能力。这些问题的一个潜在答案在于生物混合装置,它将人类干细胞与生物电子学结合起来,创造一个更有效的神经接口。现在,剑桥大学的研究人员已经做到了这一点,创造了一个突破性的新生物混合装置,可以与身体组织整合。该设备的关键成分是诱导多能干细胞(iPSCs),即成人细胞--通常是皮肤或血细胞--在实验室中被重新编程,变得像胚胎干细胞,可以发育成任何其他类型的细胞。研究人员用iPSCs创建了肌细胞,即构成骨骼肌的细胞。这是第一次以这种方式将iPSCs用于生物体内。iPSCs被排列在微电极阵列(MEAs)的网格中,该阵列非常薄,可以吸附在神经末端。这产生了一层肌细胞,位于设备的电极和活体组织之间。研究人员随后将生物混合装置植入大鼠体内进行测试。他们将该设备覆盖细胞的一侧连接到大鼠前腿中被切断的尺神经和正中神经。选择这些神经是因为它们与人类上肢神经的损伤以及相关的精细运动和感觉功能的丧失相近。与对照组相比,研究人员发现,该装置与大鼠的身体融为一体,并防止了疤痕组织的形成。此外,iPSC衍生的细胞在植入后存活了四周,这是细胞首次在这种长时间的实验中存活。该研究的共同作者DamianoBarone博士说:"这些细胞给了我们很大程度的控制。我们可以告诉它们如何表现,并在整个实验过程中检查它们。通过将细胞置于电子设备和活体之间,身体看不到电极,只看到细胞,所以不会产生疤痕组织。"四个星期后,研究人员对植入的神经进行了测试,发现它们的行为与正常的神经一样,表明了健康的神经生理学。虽然大鼠没有恢复瘫痪肢体的运动,但该设备可以检测到大脑发送的控制运动的信号。这种新设备可以帮助截肢者,其中的挑战是试图使神经元再生,并重建因受伤或截肢而造成的神经回路损伤。Barone说:"例如,如果有人被截去了手臂或腿部,那么神经系统中的所有信号仍然存在,尽管物理上的肢体已经消失。整合假肢,或恢复手臂或腿部的功能,所面临的挑战是从神经中提取信息,并将其送到肢体上,以便恢复功能。"研究人员说他们的设备可以通过与控制运动功能的神经元直接互动来克服这个问题。共同第一作者AmyRochford说:"这种界面可以彻底改变我们与技术互动的方式。通过将活体人体细胞与生物电子材料相结合,我们创造了一个能够以更自然和直观的方式与大脑沟通的系统。"与标准的、非干细胞的神经植入物相比,该设备具有优势。它的小尺寸意味着它可以通过微创手术进行植入,而使用实验室生产的干细胞使其具有高度的可扩展性。该研究的共同第一作者AlejandroCarnicer-Lombarte博士说:"这项技术代表了一种令人兴奋的神经植入新方法,我们希望它将为有需要的患者开启新的治疗方法。"该设备在用于人体之前还需要进一步的研究和广泛的测试,但它代表了神经植入的一个有希望的发展。研究人员正在努力优化该设备并提高其可扩展性。该研究发表在《科学进展》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1350753.htm手机版:https://m.cnbeta.com.tw/view/1350753.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人