此前未被知晓的细胞内电力可能为生物学研究提供动力

此前未被知晓的细胞内电力可能为生物学研究提供动力生物凝结物,有点像水中的油滴,蕴藏着不平衡的电荷,可能为早期生命的开始提供所需的能量。现在,杜克大学的研究人员发现,这些类型的电场也存在于另一种类型的细胞结构内和周围,称为生物凝结物。就像漂浮在水中的油滴一样,这些结构的存在是因为密度的不同。它们在细胞内形成隔间,而不需要膜的物理边界。以前的研究表明,与空气或固体表面相互作用的微水滴会产生微小的电不平衡,受此启发,研究人员决定看看小型生物冷凝物是否也是如此。他们还想看看这些不平衡是否像这些其他系统一样引发了活性氧,"氧化还原"反应。他们的基础性发现于4月28日发表在《化学》杂志上,可以改变研究人员对生物化学的思考方式。它还可能提供一条线索,说明地球上的第一个生命是如何利用产生所需的能量的。"在没有酶催化反应的前生物环境中,能量从何而来?"在生物医学工程系AlanL.Kaganov特聘教授AshutoshChilkoti和生物医学工程系JamesL.Meriam特聘教授LingchongYou的实验室工作的杜克大学博士后研究员戴一凡问。这一发现为反应能量的来源提供了一个合理的解释,就像放在电场中的点状电荷所获得的势能一样。当电荷在一种材料和另一种材料之间跳跃时,它们可以产生分子碎片,这些碎片可以配对并形成羟基自由基,其化学式为OH。然后这些可以再次配对,形成过氧化氢(H2O2),数量微小但可检测。但是,除了细胞膜之外,界面很少在生物系统中被研究,而细胞膜是生物学中最重要的部分之一。"所以我们想知道在生物凝结物的界面上可能会发生什么,也就是说,如果它也是一个不对称的系统。"细胞可以建立生物凝结物,将某些蛋白质和分子分开或困在一起,阻碍或促进它们的活动。研究人员刚刚开始了解凝结物是如何工作的,以及它们可以用来做什么。Chilkoti实验室擅长创造自然发生的生物凝结物的合成版本,研究人员很容易为他们的理论创造一个试验台。在加州大学伯克利分校克里斯托弗-J-张小组的博士后学者马可-梅西纳的帮助下,他们将一种染料添加到系统中,在活性氧的存在下发光。在一项突破性的研究中,研究人员发现了生物凝结物中的电活动,这些细胞结构以前并不知道会有这种活动。传统上,科学家们认为,对生物过程至关重要的电不平衡只能存在于细胞膜之间。然而,这项研究在之前发现这种不平衡可能发生在空气和水微滴之间的研究基础上,揭示了类似的电场也存在于生物凝结物内部和周围。研究人员发现,这些不平衡可以引发活性氧或"氧化还原"反应。这一发现不仅挑战了现有的对生物化学的理解,而且还可以提供关于地球上第一个生命如何利用其存在所需能量的见解。他们的预感是正确的。当环境条件合适时,凝结物的边缘开始发出光芒,证实了一个以前未知的现象在起作用。Dai接下来与斯坦福大学MargueriteBlakeWilbur化学教授RichardZare进行了交谈,他的小组建立了水滴的电气行为。Zare听到生物系统中的新行为后非常兴奋,并开始与该小组合作研究其潜在机制。Zare说:"受到以前关于水滴的工作的启发,我的研究生ChristianChamberlayne和我认为同样的物理原理可能适用并促进氧化还原化学,例如过氧化氢分子的形成。这些发现表明为什么凝结物在细胞的运作中如此重要。""以前关于生物分子凝结物的大多数工作都集中在它们的内部,"Chilkoti说。"生物分子凝集物似乎具有氧化还原活性,这表明凝集物并不像人们通常理解的那样简单地进化为执行特定的生物功能,而是它们还被赋予了一种对细胞至关重要的化学功能。"虽然我们细胞内的这种持续反应的生物学意义尚不清楚,但研究人员指出了一个生物前的例子,说明其影响可能是多么强大。我们细胞的动力中心,称为线粒体,通过相同的基本化学过程为我们所有的生命功能创造能量。但是在线粒体或甚至最简单的细胞存在之前,必须有东西为生命的最初功能提供能量才能开始工作。研究人员提出,这种能量是由海洋中的热喷口或温泉提供的。还有人提出,这种发生在水微滴中的氧化还原反应也是由海浪的喷射产生的。"当物质变得微小,界面体积与它的体积相比变得巨大时,神奇的事情就会发生,"Dai说。"我认为其影响对许多不同的领域都很重要。"...PC版:https://www.cnbeta.com.tw/articles/soft/1357905.htm手机版:https://m.cnbeta.com.tw/view/1357905.htm

相关推荐

封面图片

生物学家研制出光动力酵母菌 带来对进化、生物燃料和细胞衰老的新认识

生物学家研制出光动力酵母菌带来对进化、生物燃料和细胞衰老的新认识AnthonyBurnett说:“坦率地说,我们对将酵母转化为光养生物(能够利用光能的生物)是多么简单感到震惊。我们所需要做的就是移动一个基因,它们在光照下的生长速度比在黑暗中快2%。没有任何微调或精心的哄骗,它就是有效的。”很容易地为酵母配备这样一个进化上重要的特征,可能对我们理解这种特征是如何起源的意义重大,以及如何将其用于研究生物燃料生产、进化和细胞老化等问题。寻找能量提升这项研究的灵感来自于该小组过去研究多细胞生命进化的工作。该小组去年在《自然》杂志上发表了他们的第一份关于多细胞长期进化实验(MuLTEE)的报告,揭示了他们的单细胞模式生物“雪花酵母”是如何在3000代的时间里进化出多细胞的。在这些进化实验中,出现了多细胞进化的一个主要限制:能量。“氧气很难扩散到组织深处,因此你得到的组织没有能力获得能量。”“我一直在寻找绕过这种基于氧的能量限制的方法。”在不使用氧气的情况下给生物体提供能量的一种方法是通过光。但是从进化的角度来看,将光转化为可用能量的能力是复杂的。例如,允许植物利用光作为能量的分子机制涉及许多基因和蛋白质,这些基因和蛋白质在实验室和自然进化中都很难合成和转移到其他生物体中。幸运的是,植物并不是唯一能将光转化为能量的生物。保持简单生物体利用光的一种更简单的方法是利用视紫红质:一种无需额外的细胞机制就能将光转化为能量的蛋白质。该研究的主要作者AutumnPeterson说:“视紫红质在生命之树上随处可见,显然是生物体在进化过程中相互获取基因而获得的。”这种类型的基因交换被称为水平基因转移,涉及在不密切相关的生物体之间共享遗传信息。水平基因转移可以在短时间内引起看似巨大的进化跳跃,比如细菌如何迅速对某些抗生素产生耐药性。这可能发生在所有的遗传信息中,特别是在视紫红质蛋白中。“在寻找将视紫红质转移到多细胞酵母中的方法的过程中,我们发现我们可以通过将其转移到常规的单细胞酵母中来了解过去在进化过程中发生的视紫红质水平转移。”为了观察他们是否能给单细胞生物配备太阳能视紫红质,研究人员将一种由寄生真菌合成的视紫红质基因添加到普通的面包酵母中。这种特殊的基因被编码为一种视紫红质,这种视紫红质会被插入细胞的液泡中,液泡是细胞的一部分,像线粒体一样,可以将视紫红质等蛋白质产生的化学梯度转化为能量。配备了空泡紫红质,酵母在光照下的生长速度大约快了2%——这对进化来说是一个巨大的好处。“在这里,我们有一个单一的基因,我们只是把它跨环境拉到一个以前从未有过光养性的谱系中,它就这样工作了。”“这表明,这种系统真的很容易,至少有时,在一个新的有机体中发挥作用。”这种简单性提供了关键的进化见解,研究人员说明了“视紫红质能够轻易地在如此多的谱系中传播,以及为什么会这样”。由于空泡功能可能有助于细胞衰老,该小组也开始合作研究视紫红质如何能够减少酵母的衰老效应。其他研究人员已经开始使用类似的新型太阳能酵母来研究推进生物生产,这可能标志着生物燃料合成等方面的重大进步。然而,这一团队更热衷于探索这种额外的好处如何影响单细胞酵母向多细胞生物的转变。“我们有这个美丽的简单多细胞模型系统,”Burnett说,他指的是长期运行的多细胞长期进化实验(MuLTEE)。“我们想给它光营养,看看它是如何改变它的进化的。”...PC版:https://www.cnbeta.com.tw/articles/soft/1414981.htm手机版:https://m.cnbeta.com.tw/view/1414981.htm

封面图片

干细胞生物学家为研究创造新的人类细胞类型

干细胞生物学家为研究创造新的人类细胞类型鲁汶大学的VincentPasque教授和他的团队已经成功地在实验室里利用干细胞生成了一种新型的人类细胞。这些新细胞与早期人类胚胎中的自然对应物非常相似。因此,研究人员现在可以更好地研究胚胎植入子宫后的情况。该研究结果发表在《细胞·干细胞》杂志上。如果一切顺利的话,人类胚胎在受精后约七天植入子宫。在这一点上,由于技术和伦理上的限制,胚胎变得无法用于研究。这就是科学家们已经开发了各种类型的胚胎和胚胎外细胞的干细胞模型,以便在培养皿中研究人类发育的原因。由VincentPasque领导的研究团队已经为一种特定类型的人类胚胎细胞,即胚胎外中胚层细胞,开发了第一个模型。Pasque教授说:“这些细胞在胚胎中产生第一滴血,帮助胚胎附着在未来的胎盘上,并在形成原始脐带中发挥作用。在人类中,这种类型的细胞出现在比小鼠胚胎更早的发育阶段,而且物种之间可能还有其他重要差异。这使得我们的模型特别重要:对小鼠的研究可能不会给我们同样适用于人类的答案。”研究人员用人类干细胞制作了他们的模型细胞,这些细胞仍然可以发育成胚胎的所有细胞类型。这些新细胞与人类胚胎中的自然对应物非常相似,因此是该特定细胞类型的良好模型。“你不会每天都制造一种新的人类细胞类型,”Pasque说。“我们非常兴奋,因为现在我们可以研究通常在发育过程中无法触及的过程。事实上,该模型已经使我们找到了胚胎外中胚层细胞的来源。从长远来看,我们的模型也将有望对生育问题、流产和发育障碍等医学难题提供更多的启示。”...PC版:https://www.cnbeta.com/articles/soft/1311881.htm手机版:https://m.cnbeta.com/view/1311881.htm

封面图片

科学家发明荧光探针 揭示细胞生物学"暗物质"的新奥秘

科学家发明荧光探针揭示细胞生物学"暗物质"的新奥秘糖在我们的生活中无处不在,几乎存在于我们吃的所有食物中。但这些简单碳水化合物的重要性远不止于美味的甜点。糖对生物体内几乎所有的生物过程都至关重要,天然存在的糖分子种类繁多。Cecioni说:"构成生物体的所有细胞都覆盖着一层称为糖的糖基分子。因此,糖几乎处于所有生理过程的第一线,在维持健康和预防疾病方面发挥着根本性的作用"。"锁和钥匙"图。资料来源:塞西奥尼实验室他补充说:"长期以来,科学家们认为细胞表面的复杂糖类只是一种装饰。但我们现在知道,这些糖与许多其他类型的分子相互作用,特别是与凝集素--一个庞大的蛋白质家族有着相互作用。"与糖类一样,凝集素也存在于所有生物体中。这些蛋白质具有独特的识别能力,能暂时附着在糖类上。这种相互作用发生在许多生物过程中,例如在感染引发的免疫反应过程中。最近,凝集素引起了人们的广泛关注。这是因为科学家们发现,凝集素"粘附"在糖类上的现象在许多疾病的出现中起着关键作用。塞乔尼说:"我们对糖和凝集素之间的相互作用研究得越多,就越能认识到它们在疾病过程中的重要性。研究表明,细菌在我们的肺部定植、病毒入侵我们的细胞,甚至癌细胞欺骗我们的免疫系统,使其误以为自己是健康细胞,都与这种相互作用有关。"难以检测......直到现在关于糖和凝集素之间的相互作用是如何展开的谜题仍有许多缺失,因为它们很难研究。这是因为这些相互作用是瞬时的、微弱的,因此检测是一项真正的挑战。塞西奥尼的两名学生,硕士研究生塞西尔-布施(CécileBousch)和博士研究生布兰登-弗勒兹(BrandonVreulz)想到了用光来检测这些相互作用。三位研究人员开始着手制造一种化学探针,能够"冻结"糖和凝集素之间的相遇,并通过荧光使其可见。糖和凝集素之间的相互作用可以用"锁和钥匙"的关系来描述,其中"钥匙"是糖,"锁"是凝集素。化学家们已经创造出了能够阻断这种"锁与钥匙"相互作用的分子,现在可以准确地识别出哪些糖与凝集素结合,这对人类健康具有重大意义。Cecioni解释说:"我们的想法是用发色团(一种赋予分子颜色的化学物质)标记糖分子。这种发色团实际上具有荧光性,这意味着如果糖与凝集素的结合被有效捕获,它就会发出荧光。科学家们就可以研究这些相互作用的内在机制以及可能产生的干扰"。塞西奥尼和他的学生相信,他们的技术可以用于其他类型的分子。他们甚至有可能控制新产生的荧光标记探针的颜色。通过将分子间的相互作用可视化,这一发现为研究人员提供了研究生物相互作用的宝贵新工具,其中许多相互作用对人类健康至关重要。...PC版:https://www.cnbeta.com.tw/articles/soft/1397829.htm手机版:https://m.cnbeta.com.tw/view/1397829.htm

封面图片

一个生物学奇迹:哈佛大学研究人员发现成年多能干细胞的胚胎起源

一个生物学奇迹:哈佛大学研究人员发现成年多能干细胞的胚胎起源尽管这些成体多能干细胞(aPSCs)存在于各种动物物种中,如海绵、水螅、平面扁虫、阿库尔蠕虫和一些海鞘,但它们如何产生的机制在任何物种中仍然是未知的。在发表在《细胞》杂志上的一项新研究中,哈佛大学有机和进化生物学系的研究人员已经确定了无尾熊虫(Hofsteniamiamia)形成APSCs的细胞机制和分子轨迹。图片显示胚胎的单个细胞是如何为这项研究专门和系统地转化为红色的。资料来源:JulianKimuraH.miamia,也被称为三带豹形虫,是一个可以使用被称为"新细胞"的APSCs完全再生的物种。将H.miamia切成碎片,每一块都会长出一个新的身体,包括从嘴巴到大脑的一切。高级作者MansiSrivastava教授多年前在野外收集了H.miamia,因为它具有再生能力。一旦回到实验室,H.miamia开始产生许多个体,可以很容易地进行研究。在Srivastava和合著者博士后研究员LorenzoRicci之前的一项研究中开发了一个H.miamia的转基因协议。转基因是一个将通常不属于生物体基因组的东西引入该基因组的过程。这种方法使主要作者JulianO.Kimura(22岁的博士)能够继续他的问题,即这些干细胞是如何产生的。研究人员发现,在能够再生的动物中,一个共同的特点是在成年体内存在多能干细胞,这些细胞负责在动物受伤时重新制造缺失的身体部位。通过了解像H.miamia这样的动物如何制造这些干细胞,可以更好地了解是什么让某些动物具有再生能力。一对细胞在16细胞阶段的胚胎转化为红色。随着时间的推移,细胞分裂出更多的细胞,进入胚胎内部,并形成孵化后的蠕虫的干细胞。资料来源:JulianKimura成年动物中的这些干细胞群有一些统一的特征,如表达一种叫做Piwi的基因。但到目前为止,还没有人能够弄清楚这些干细胞首先是如何产生的。"它们大多是在成年动物的背景下被研究的,"Srivastava说,"在一些物种中,我们知道一点它们可能是如何工作的,但我们不知道它们是如何制造的。"研究人员知道蠕虫幼体含有APSCs,因此推断它们一定是在胚胎发育过程中产生的。Ricci使用转基因技术创造了一个品系,由于将蛋白质Kaede引入细胞,使胚胎细胞发出荧光绿光。Kaede是可光转化的,这意味着用非常特定波长的激光束照射绿色会将其转化为红色,然后可以用激光照射细胞,将胚胎的个别绿色细胞变成红色。利用转基因动物的光转换是我们在实验室里设计的一个非常新的转折,以弄清胚胎细胞的命运。应用这种方法,研究人员通过让胚胎生长和观察所发生的事情来进行血统追踪。8细胞阶段的胚胎的一个单细胞转化为红色。随着时间的推移,该细胞分裂出更多的细胞,这些细胞最终构成了孵化出的虫子的大部分皮肤。资料来源:JulianKimuraKimura跟踪了胚胎的发展,因为它从一个细胞分裂到多个细胞。这些细胞的早期分裂以定型裂解为标志,这意味着胚胎到胚胎的细胞以完全相同的模式分裂,这样就可以对细胞进行一致的命名和研究。这提出了一种可能性,即也许每一个细胞都有一个独特的目的。例如,在八细胞阶段,有可能顶部、左角的细胞制造某种组织,而底部、右边的细胞则制造另一种组织。为了确定每个细胞的功能,木村系统地对早期胚胎的每个细胞进行了光电转换,在八细胞阶段创建了一个完整的命运图。然后,当蠕虫成长为仍然带有红色标签的成年时,他跟踪了这些细胞。在许多胚胎中反复跟踪每个细胞的过程使木村有可能追踪每个细胞的工作位置。在16个细胞阶段的胚胎中,他发现了一对非常特殊的细胞,这些细胞产生了看起来是新细胞的细胞。虽然这一发现很令人兴奋,但仍有一种可能性,即新细胞来自早期胚胎的多个来源,而不仅仅是在16个细胞阶段发现的两对。发现在外观上类似于新细胞的细胞并不能确定它们真的是新细胞,需要证明它们的行为也像新细胞。为了确定这一点,Kimura将这组特殊的细胞(在H.miamia中称为3a/3b)进行试验。为了成为新细胞,这些细胞必须满足干细胞的所有已知特性。这些细胞的后代在再生过程中是否在制造新组织?研究人员的新发现确认了这一事实,只有这些细胞的后代在再生期间制造新组织。另一个决定性的属性是干细胞的基因表达水平,它们必须有数百个基因表达。为了确定3a/3b是否符合这一特性,Kimura将3a/3b发红光的后代和所有其他细胞发绿光的后代,用一台分拣机将红绿细胞分开。然后他应用单细胞测序技术来询问,哪些基因在红细胞和绿细胞中被表达。该数据证实,在分子水平上,只有3a/3b细胞的后代与干细胞匹配,而不是任何其他细胞的后代。因此,研究人员可以明确确认,在他们的系统中找到了干细胞群的细胞来源。但是,重要的是,知道了干细胞的细胞来源后,就有办法在细胞成熟时捕捉它们,并确定哪些基因参与了制造它们。木村在单细胞水平上生成了一个巨大的胚胎发育数据集,详细说明了从发育开始到结束,哪些基因在胚胎的所有细胞中被表达。他允许转换后的3a/3b细胞进一步发展,但不是一直发展到孵化阶段。然后他使用分选技术捕获这些细胞。通过这样做,木村可以清楚地定义哪些基因在制造干细胞的细胞系中被特别表达。研究人员计划继续深入挖掘这些基因在Hofsteniamiamia的干细胞中是如何工作的机制,这将有助于告诉人们自然界是如何进化出一种制造和维持多能干细胞的方式。了解APSCs的分子调节器将使研究人员能够跨物种比较这些机制,揭示多能干细胞是如何在动物间进化的。...PC版:https://www.cnbeta.com.tw/articles/soft/1339849.htm手机版:https://m.cnbeta.com.tw/view/1339849.htm

封面图片

创新的荧光染料可同时观察多种不同的生物环境 实现细胞内的"时空旅行"

创新的荧光染料可同时观察多种不同的生物环境实现细胞内的"时空旅行"先进的成像技术由于细胞内发出的光与输送血管内相同染料发出的光颜色不同,发生在不同的时间窗口内,因此研究人员可以使用一种名为"荧光寿命成像"(FLIM)的技术来实时区分这两种环境。这项研究成果最近发表在国际权威期刊《化学》上。第一作者亚当-亨伍德博士是化学学院的高级研究员,常驻三一生物医学科学研究所(TBSI),他与博士生康妮-西格文森(ConnieSigurvinsson)共同完成了这项设计。亨伍德博士解释说:"生物成像依赖于"开/关"染料,即染料只在一组条件下发光,其他条件下则关闭。这非常有用,但也意味着在显微镜下一次只能观察一个地方。这项工作令人兴奋的地方在于,我们的染料找到了一个最佳点,使其具有独特的开/关/开特性,更重要的是,我们可以观察和区分这些不同的"开"状态。""因此,我们比以前看得更多,看得更清楚。我们通过对样本发出的光到达显微镜所需的时间进行计时来做到这一点:来自输送血管的光比来自细胞内的光所需的时间稍长。收集到足够多的光信号后,我们就能利用这些信息快速建立两种不同染料环境的精确三维图像。这种时间差很小--无论哪种方式,都只有几十亿分之一秒--但我们的方法足够灵敏,可以捕捉到这种时间差。"这种独特的质量意味着这种染料可以有大量的应用,例如,有可能彻底改变生物传感和成像方法。同一染料从纯有机溶剂(左)到水(右)的发光变化。资料来源:都柏林圣三一学院AdamHenwood博士由于这些染料能帮助科学家以如此高的对比度和特异性绘制活细胞内错综复杂的结构图,它们可以帮助阐明药物是如何被细胞吸收和代谢的,或者让科学家能够设计和进行一系列新的实验,以更好地了解细胞复杂的内部运作及其至关重要的生化机制。在这篇发表在杂志上的文章中,科学家们重点使用这种染料对细胞脂质(脂肪)液滴进行成像,脂质液滴是构成大多数复杂生物体(如我们人类)活细胞的重要"细胞器"之一。脂滴曾被认为是简单的"脂肪库",但现在人们相信,脂滴在调节细胞代谢、协调细胞内脂质的摄取、分布、储存和使用方面发挥着重要作用。由于人们对它们的重要性有了越来越多的了解,而且它们活性的突然变化往往预示着细胞受到了压力,因此它们是染料的一个有用的测试案例。进一步研究的一个潜在途径是,研究小组能否用他们的染料靶向其他重要的细胞器。文章的资深作者ThorfinnurGunnlaugsson是三一学院化学学院的化学教授,常驻TBSI。他说:"通过观察不同的荧光发射颜色来监测细胞功能或分子或候选药物在细胞内的流动是非常有吸引力的。这里的突破在于,我们可以利用荧光寿命的差异,快速准确地识别不同细胞环境中的相同探针,从而绘制出它们在细胞内的彩色"时间旅行"图。然而,最令人兴奋的是,这种现象并不适用于细胞成像。这些结果为研究化学生物学(正如我们在这里所展示的那样)、许多其他医学应用,甚至在生成生物学以外的新型功能材料方面开辟了新的可能性。任何需要控制分子运动的分子或纳米材料,原则上都可以利用我们的新方法进行映射和微调。"潜在应用和未来方向事实上,作者们正是打算在这里大展身手。他们为这些染料设想了许多新的可能性,指出它们的特殊灵敏度对开发有害环境污染物传感器或利用其明亮的发光特性为化学转化提供动力(类似于自然界自身的光合作用)具有吸引力。这项研究既具有国际性(有八个国家的代表参加),又具有爱尔兰特色,爱尔兰的主要资助机构爱尔兰研究理事会(IRC)和爱尔兰科学基金会都发挥了重要的财政支持作用。最值得一提的是爱尔兰科学院的药物研究中心(SSPC),它是这项工作的主要资助机构,爱尔兰科学院的安博中心也为这项工作提供了资助,此外,安博中心还通过基于安博的EPSRC-SFI中心博士培训计划提供了资助。利默里克大学物理学教授、SSPC主任达米安-汤普森(DamienThompson)教授说:"作为一个中心,我们在材料与生物学的交界处不断向前推进并创造新的知识。我们三一学院的两位主要研究人员与RCSI之间的这项合作展示了基础科学推动医学创新的力量。我们越接近分子-细胞界面,关键是我们越能实时看到分子如何在细胞纳米机械内部从一个地方扩散到另一个地方,我们就越接近实现理查德-费曼(RichardFeynman)的梦想,即从原子的摆动和抖动中了解生物所做的一切。但直到最近,研究人员才拥有足够的实验和计算资源来跟踪复杂生物环境中的这些运动和振动。这项令人兴奋的新工作展示了亚细胞动态的更具体、高对比度成像,这反过来将使研究人员能够开发出更有效的药物配方,并减少副作用"。负责监督这项研究的多纳尔-奥谢(DonalO'Shea)教授是RCSI化学系和超分辨率成像联合会(由爱尔兰科学基金会SFI资助)的细胞成像专家。他补充说:"我们使用FLIM来跟踪AIE与活细胞的动态相互作用,这种方法可以广泛应用于其他荧光团系统,从而获得以前不为人知的见解。"编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1420467.htm手机版:https://m.cnbeta.com.tw/view/1420467.htm

封面图片

资源Essential Cell Biology 基本细胞生物学(第 5 版)

资源名称:EssentialCellBiology基本细胞生物学(第5版)描述:英语865页真正的PDF98.3MB本书文字生动、清晰,插图精美,是细胞和分子生物学第一门课程的理想教材。第五版经过彻底修订和更新,始终专注于最新的细胞生物学研究。EssentialCellBiology有史以来第一次可以访问诺顿创新的在线作业平台Smartwork5,从而创造更完整的学习体验。链接:https://www.aliyundrive.com/s/6SX3BycNPgg

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人