二合一:量子点的突破同时结合了激光和LED的能力

二合一:量子点的突破同时结合了激光和LED的能力艺术家对胶体量子点(彩色六边形)从溶液(一滩液体)中投射到光栅(一组水平线)上,并通过电(闪电般的痕迹)或光学(来自右边的狭窄白色光束)激发,产生多色输出(光束从中间向左下方扩散)的表现。资料来源:AlbinGuyot洛斯阿拉莫斯国家实验室的一个团队已经克服了在技术上可行的基于胶体量子点技术的高强度光发射器的关键挑战,产生了既能作为光学激励激光器又能作为高亮度电驱动发光二极管(LED)工作的双功能器件。正如《先进材料》杂志所描述的那样,这一进展代表了迈向电泵送胶体量子点激光器或激光二极管的一个关键里程碑,这种新型设备的影响将跨越众多技术,包括集成电子和光子学、光学互连、片上实验室平台、可穿戴设备和医疗诊断。"对胶体量子点激光二极管的探索代表了世界范围内旨在实现基于溶液加工材料的电泵浦激光器和放大器的努力的一部分,"洛斯阿拉莫斯化学部门的科学家和该研究的团队负责人维克多-克里莫夫说。"这些设备因其与几乎任何基底的兼容性、可扩展性和与片上电子和光子学(包括传统的硅基电路)的易于集成而被有着急迫的需求。"与标准的LED一样,在该团队的新设备中,量子点层充当了一个电驱动的光发射器。然而,由于每平方厘米超过500安培的极高电流密度,这些器件表现出前所未有的亮度,每平方米超过100万坎德拉(坎德拉衡量在特定方向发射的光功率)。这种亮度使它们非常适合于日光显示器、投影仪和交通灯等应用。量子点层还表现为一个高效的波导放大器,具有较大的净光学增益。洛斯阿拉莫斯团队用一个包含所有电荷传输层和电泵所需其他元素的全功能LED型设备堆栈实现了窄带发光。这一进展为备受期待的电泵送发光演示打开了大门,这一效果将使胶体量子点发光技术得以全面实现。胶体量子点半导体纳米晶体--或胶体量子点--是实现包括激光二极管在内的照明设备的有吸引力的材料。它们可以通过中等温度的化学技术以原子级精度制备。此外,由于它们的尺寸很小,与电子波函数的自然范围相当,量子点表现出离散的类似原子的电子状态,其能量直接取决于颗粒大小。这种所谓的"量子尺寸"效应的结果可以被利用来将发光线调到所需的波长,或设计一个支持多波长发光的多色增益介质。从量子点电子状态的特殊原子状光谱衍生出的其他优势包括低光学增益阈值和抑制发光特性对器件温度变化的敏感性。解决电泵挑战的创新设计大多数量子点发光研究都采用了短光脉冲来激发光学增益介质。用电驱动量子点实现发光是一项更具挑战性的任务。通过他们的新设备,洛斯阿拉莫斯研究小组向这一目标迈出了重要一步。实验室主任的博士后和量子点团队的首席设备专家NamyoungAhn说:"挑战在于电和光设备的设计领域。特别是该设备的电荷注入结构必须能够产生和维持激光作用所需的非常高的电流密度。同一装置还必须表现出低的光学损耗,以使得不抑制在薄的量子点活性介质中产生的增益。"为了提高光学增益,该团队开发了新的纳米晶体,他们称之为"紧凑成分分级量子点"。"这些新型量子点的特点是由于内置的成分梯度而抑制了奥格重组,并且当组装在作为光学增益介质的密实固体中时,同时表现出较大的增益系数,"量子点团队的博士后ClémentLivache说,他对制造的器件进行了光谱研究。"这有助于在一个复杂的电致发光结构中实现净光学增益,在这个结构中,一个薄的、可放大光的量子点层与多个吸收光的电荷传导层相结合。"为了促进光的放大,研究人员还减少了他们设备中的光学损失。特别是,他们重新设计了电荷注入架构,去掉了有光学损耗的金属类材料,用适当优化的低吸收率有机层代替。此外,他们还设计了一个器件的截面轮廓,以减少高吸收性电荷传输层中的光场强度,同时增强量子点增益介质中的光场强度。最后,为了实现激光振荡,所开发的器件还补充了一个光腔,该光腔被制备成一个周期性的光栅,被集成到器件的一个电极中。这个光栅作为一个所谓的分布式反馈谐振器,允许光在量子点层的横向平面上循环,从而实现多通道放大。最后的挑战科学家利用光学激励达到了发光效果,由于通过电流产生的过多热量导致器件性能下降,因此没有观察到使用电泵的发光效果。这是展示电驱动激光振荡需要解决的最后一个挑战。就在几年前,由于超快的奥格衰变、量子点LED的电流密度不足以及在同一设备中结合电致发光和发光功能的困难等问题,电泵送胶体量子点激光器被广泛认为是不可能的。洛斯阿拉莫斯量子点团队的成果展示了对大多数这些问题的实际解决方案,表明功能性量子点激光二极管已近在眼前。...PC版:https://www.cnbeta.com.tw/articles/soft/1360735.htm手机版:https://m.cnbeta.com.tw/view/1360735.htm

相关推荐

封面图片

照亮前行之路:卓越片上激光器的量子探索

照亮前行之路:卓越片上激光器的量子探索量子点和量子阱激光二极管由III-V族QW/QDDFB激光器和SiN微扰谐振器组成量子点和量子阱激光二极管:微谐振器的未来基于量子阱(QW)和量子点(QD)半导体材料的片上激光二极管现已成为各种应用的主要候选器件。量子阱(QW)和量子点(QD)基于半导体材料的片上激光二极管目前已成为各种应用的主要候选器件,它们具有功率效率高、可在高温下工作和体积小等诱人特性。尽管QWs已经广泛应用于商业产品中,但QDs以其独特的零维态密度和类似原子的退变性,成为一种很有前途的替代品。通过自注入锁定,III-V族激光器与氮化硅(SiN)微谐振器的异质集成增加了内在优势。这些优势包括结构紧凑、大批量生产的潜力以及更高的稳定性。与在原生平台上生长的III-V族激光器相比,该技术具有更出色的线宽收窄性能。不同QD层(a)和QD密度(b)下III-V族/SiN族QD激光器的线宽FWHM与注入电流密度的函数关系。资料来源:EmadAlkhazraji、WengW.Chow、FrédéricGrillot、JohnE.Bowers和YatingWan。探索量子阱和量子点器件的新研究最近发表在《光科学与应用》杂志上的一项研究对复合腔激光器有源介质的设计进行了参数调查。这项研究由沙特阿拉伯阿卜杜拉国王科技大学(KAUST)集成光子学实验室的万雅婷教授、美国阿尔伯克基桑迪亚国家实验室的WengW.Chow博士、法国巴黎综合理工学院巴黎电讯LTCI的FrédéricGrillot教授和美国加州大学圣巴巴拉分校的JohnBowers教授共同领导。研究小组重点研究了载流子量子约束对锁定复合腔器件的动态和光谱特性的影响。他们特别强调了将III-V族QW或QD分布反馈(DFB)激光器与SiN微孔谐振器集成时发射光谱的细化或线宽的缩小。该研究论文的第一作者EmadAlkhazraji阐明了改进背后的原理。Alkhazraji解释说:"当适当调整并锁定到一个或多个微孔的whisperinggallery模式时,瑞利后向散射形式的光反馈可使激光二极管的激光线宽大幅降低到Hz级。"图像显示了4D设计空间和每个器件的最佳点。资料来源:EmadAlkhazraji、WengW.Chow、FrédéricGrillot、JohnE.Bowers和YatingWan。研究结果和对未来设计的启示通过遗传算法对QW和QD器件进行多目标设计-操作优化分析,研究人员结束了参数调查,然后采用多决策算法确定每个优化变量的最佳设计操作点。"这些发现为更全面的参数研究提供了指导,可以为工程设计提供及时的结果,"万教授总结道。该研究强调了激光二极管技术领域的改进和进一步发展潜力。...PC版:https://www.cnbeta.com.tw/articles/soft/1371359.htm手机版:https://m.cnbeta.com.tw/view/1371359.htm

封面图片

长春光机所在量子精密测量用窄线宽半导体激光器方面取得新进展

长春光机所在量子精密测量用窄线宽半导体激光器方面取得新进展中国科学院长春光学精密机械与物理研究所大功率半导体激光器研究团队在王立军院士、宁永强研究员的领导下,近年来开展了先进窄线宽半导体激光器及关键技术攻关。近日,该团队陈超副研究员报道了一种基于外部光反馈结构的852nm窄线宽、线偏振半导体激光器。激光器结构通过引入飞秒激光诱导的双折射Bragg光栅滤波器,并与高偏振相关性半导体增益芯片混合集成,利用偏振模式选择性反馈和注入锁定技术,实现了超过30dB偏振消光比和低至2.58kHz的高线偏振、窄线宽激光输出。该激光器可作为量子精密测量系统的潜在原子泵浦光源,并且基于前期在抗辐射、窄线宽激光器方面的研究基础,亦有希望用于空间环境中星载和箭载的冷原子量子实验系统。

封面图片

量子计算的新宠:科学家成功利用激光控制由钡制成的单个量子比特

量子计算的新宠:科学家成功利用激光控制由钡制成的单个量子比特这种新方法是滑铁卢大学量子计算研究所(IQC)开发的,它使用一个小型玻璃波导来分离激光束,并将它们聚焦在相距四微米的地方,大约是一根头发宽度的四百分之一。在并行控制目标量子比特上的每束聚焦激光的精度和程度是以往研究无法比拟的。IQC和滑铁卢大学物理与天文学系教授K.RajibulIslam博士说:"我们的设计将串扰量--落在相邻离子上的光量--限制在0.01%的极小相对强度,这在量子界是数一数二的。与以往对单个离子进行敏捷控制的方法不同,基于光纤的调制器不会相互影响。""这意味着我们可以与任何离子对话而不影响其相邻离子,同时还能最大限度地控制每个离子。据我们所知,在学术界和工业界,这是具有如此高精度的最灵活的离子量子比特控制系统。"绿色激光是操纵钡离子能态的正确能量。资料来源:滑铁卢大学钡离子:量子计算的新宠钡离子是科学家们的目标,因为它们在困离子量子计算领域越来越受欢迎。钡离子具有方便的能态,可用作量子位的零级和一级,并能用可见绿光进行操纵,而其他原子类型则不同,同样的操纵需要更高能量的紫外光。这样,研究人员就可以使用紫外线波长所不具备的商用光学技术。研究人员制作了一个波导芯片,它能将一束激光分成16个不同的光通道。然后,每个通道都被导入基于光纤的独立调制器,这些调制器可独立对每束激光的强度、频率和相位进行灵活控制。然后,利用一系列类似望远镜的光学透镜将激光束聚焦到很小的间距。研究人员通过使用精确的摄像传感器对每束激光进行测量,从而确认了它们的聚焦和控制。这项工作是滑铁卢大学利用原子系统构建钡离子量子处理器的努力的一部分,Islam的共同首席研究员、IQC和滑铁卢大学物理和天文系教师CrystalSenko博士说。"我们使用离子是因为它们是完全相同的、自然制造的量子比特,所以我们不需要制造它们。我们的任务是找到控制它们的方法"。创新的波导方法展示了一种简单而精确的控制方法,为操纵离子来编码和处理量子数据以及在量子模拟和计算中的应用带来了希望。...PC版:https://www.cnbeta.com.tw/articles/soft/1383059.htm手机版:https://m.cnbeta.com.tw/view/1383059.htm

封面图片

理化学研究所在硅量子点寿命研究上获得突破

理化学研究所在硅量子点寿命研究上获得突破理化学研究所三位物理学家开发的用于优化半导体纳米器件的理论模型将有助于扩大量子硬件的规模。被困在半导体设备中的电子为未来的量子计算机提供了一个很有前途的构建模块。电子有一种被称为自旋的特性,当被测量时,它以两种状态之一存在,就像传统计算中使用的二进制信息,或比特。但由于其量子性质,自旋可以存在于两种状态的叠加中。这些量子比特,或称量子比特,是量子信息处理的核心。彼得-斯塔诺和两位同事为优化基于硅量子点的自旋量子比特的设计开发了一个理论模型。电子或其带正电的对应物,即空穴,可以被隔离在被称为量子点的微小半导体块中。但电子和空穴的自旋只能在有限的时间内保持其量子状态。来自自旋环境的干扰,或噪音,可以改变自旋状态。理化学研究所新兴物质科学中心(CEMS)的彼得-斯塔诺解释说:"一旦一个量子状态被分配给一个量子比特,它立即开始消退。"这种不可避免的衰变,或称去相位,是一个基本的限制,也是与经典信息的一个重大区别,经典信息可以被永久化。了解耗损对于开发缓解耗损的方法至关重要,从而有助于大规模量子计算机的设计。现在,斯塔诺与CEMS的同事OgnjenMalkoc和DanielLoss一起,从理论上建立了一个被困在硅量子点中的孔的模型。利用这个模型,他们证明了空穴自旋保持其量子状态的时间长度取决于量子点的大小和形状以及施加在它身上的磁场和电场。该团队通过超越既定的理论模型,确定了量子点的稳健配置。斯塔诺说:"我们的结果表明,通过精心设计一个量子点,并以特定的方式放置电场和磁场,我们可以找到甜蜜点,在这些甜蜜点上,硅空穴-自旋量子比特对电噪声具有明显的鲁棒性。"这突出了自旋量子比特的主要优势之一--它们在很大程度上不受电噪声的影响,电噪声是每个半导体设备中存在的最强类型的噪声。但是去噪只是优化量子点用于量子信息处理时的设计考虑之一。读取、写入和操作量子信息的速度和可靠性也很重要。"所有这些方面都会对量子点设计有类似的敏感性,"斯塔诺说。"我们的目标是利用这里也看到的敏感性,并优化自旋-量子位设计。"...PC版:https://www.cnbeta.com.tw/articles/soft/1359571.htm手机版:https://m.cnbeta.com.tw/view/1359571.htm

封面图片

科学家开发出突破性微型光纤激光器 更锐利、更小巧、更智能

科学家开发出突破性微型光纤激光器更锐利、更小巧、更智能基于氮化硅光子集成电路的全封装混合集成铒激光器的光学图像,可提供光纤激光器相干性和以前无法实现的频率可调谐性。资料来源:AndreaBancora和YangLiu(洛桑联邦理工学院)光纤激光器使用掺杂稀土元素(铒、镱、钕等)的光纤作为光增益源(产生激光的部分)。光纤激光器能发出高质量的光束,输出功率高,效率高,维护成本低,经久耐用,而且体积通常比气体激光器小。光纤激光器也是低相位噪声的"黄金标准",这意味着它们的光束可以长期保持稳定。尽管如此,人们对芯片级光纤激光器微型化的需求仍在不断增长。基于铒的光纤激光器尤其令人感兴趣,因为它们符合保持激光器高相干性和稳定性的所有要求。但是,要实现光纤激光器的微型化,就必须在小尺度上保持其性能。现在,EPFL的刘洋博士和TobiasKippenberg教授领导的科学家们制造出了首台芯片集成的掺铒波导激光器,其性能接近光纤激光器,将宽波长可调谐性与芯片级光子集成的实用性相结合。这一突破发表在《自然-光子学》(NaturePhotonics)上。制造芯片级激光器研究人员采用最先进的制造工艺开发出了芯片级铒激光器。他们首先在超低损耗氮化硅光子集成电路的基础上构建了一个一米长的片上光腔(一组提供光反馈的反射镜)。刘博士说:"尽管芯片尺寸小巧,但我们却能将激光腔设计成米级长度,这要归功于这些微oring谐振器的集成,它们能在不增大设备物理尺寸的情况下有效延长光路。"然后,研究小组在电路中植入高浓度铒离子,选择性地产生激光所需的有源增益介质。最后,他们将电路与III-V族半导体泵浦激光器集成,以激发铒离子,使其发光并产生激光束。基于掺铒光子集成电路的混合集成激光器的光学图像,该激光器具有光纤激光相干性和以前无法实现的频率可调谐性。资料来源:YangLiu(洛桑联邦理工学院)为了完善激光器的性能并实现精确的波长控制,研究人员设计了一种创新的腔内设计,其特点是基于微孔的Vernier过滤器,这是一种可以选择特定光频的光学过滤器。滤波器可在很大范围内对激光波长进行动态调整,从而使其在各种应用中都能发挥作用。这种设计支持稳定的单模激光,其内在线宽仅为50Hz,非常窄,令人印象深刻。它还具有显著的边模抑制功能--激光器能够以单一、稳定的频率发光,同时将其他频率("边模")的强度降至最低。这确保了高精度应用在整个光谱范围内的"干净"和稳定输出。这种芯片级铒光纤激光器的输出功率超过10mW,边模抑制比超过70dB,性能优于许多传统系统。它还具有非常窄的线宽,这意味着它发出的光非常纯净和稳定,这对于传感、陀螺仪、激光雷达和光学频率计量等相干应用非常重要。基于微光的Vernier滤波器使激光器在C波段和L波段(用于电信的波长范围)内具有40nm的宽波长可调谐性,在调谐和低光谱尖刺指标("尖刺"是不需要的频率)方面都超越了传统光纤激光器,同时与当前的半导体制造工艺保持兼容。将铒光纤激光器微型化并集成到芯片级设备中可降低其总体成本,使其可用于电信、医疗诊断和消费电子等领域的便携式高度集成系统。它还可以缩小光学技术在其他各种应用中的规模,如激光雷达、微波光子学、光频合成和自由空间通信。"这种新型掺铒集成激光器的应用领域几乎是无限的,"Liu说。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1434644.htm手机版:https://m.cnbeta.com.tw/view/1434644.htm

封面图片

研究人通过可扩展量子点棋盘实现量子计算突破

研究人通过可扩展量子点棋盘实现量子计算突破承载16个量子点交叉阵列的量子芯片照片,与棋盘图案无缝集成。每个量子点就像棋盘上的棋子,都可以通过字母和数字坐标系进行唯一识别和控制。图片来源:MariekedeLorijnforQuTech。图片来源:MariekedeLorijnforQuTech量子点可用于容纳量子计算机的基础构件--量子比特。目前,每个量子位都需要自己的寻址线和专用控制电子设备。这非常不切实际,与当今的计算机技术形成了鲜明对比,在当今的计算机技术中,数十亿个晶体管只需几千条寻址线即可运行。代尔夫特理工大学(TUDelft)和应用科学研究组织(TNO)合作成立的QuTech公司的研究人员开发出了一种类似的量子点寻址方法。就像用字母(A到H)和数字(1到8)组合来寻址国际象棋棋子的位置一样,量子点也可以用水平线和垂直线组合来寻址。棋盘上的任何一点都可以通过字母和数字的特定组合来定义和寻址。他们的方法将最先进的技术提升到了一个新水平,实现了16量子点系统在4×4阵列中的运行。第一作者弗朗切斯科-博尔索伊解释说:"这种解决量子点问题的新方法有利于扩展到多个量子位。如果使用一根线控制和读出单个量子位,那么数百万个量子位就需要数百万根控制线。这种方法不能很好地扩展。但是,如果使用我们的棋盘式系统来控制量子位,那么数百万量子位只需"使用"数千条控制线即可寻址,其比例与计算机芯片非常相似。线路的减少为量子比特数量的扩展提供了前景,是量子计算机的一个突破,量子计算机最终将需要数百万量子比特。"提高数量和质量量子计算机不仅需要数百万量子比特,量子比特的质量也极为重要。最后一位作者兼首席研究员门诺-维尔德霍斯特(MennoVeldhorst)说:"就在最近,我们已经证明,这些类型的量子比特可以以99.992%的保真度运行。这是所有量子点系统中最高的,意味着每万次操作的平均误差不到1次。通过开发复杂的控制方法和使用锗作为宿主材料,这些进步成为可能,因为锗具有许多有利于量子运行的特性"。量子模拟的早期应用由于量子计算正处于早期发展阶段,因此我们有必要考虑如何以最快的速度实现实用的量子优势。换句话说:量子计算机何时才能比传统超级计算机"更好"?一个明显的优势是可以模拟量子物理,因为量子点的相互作用是基于量子力学原理的。事实证明,量子点系统可以非常有效地进行量子模拟。Veldhorst说:"在最近发表的另一篇文章中,我们展示了锗量子点阵列可用于量子模拟。这项工作是首次使用标准半导体制造材料进行的相干量子模拟。我们能够对共振价键进行初级模拟。虽然这项实验仅基于一个小型装置,但在大型系统上执行此类模拟可能会解决物理学中的长期问题。"未来工作Veldhorst总结道:"令人兴奋的是,我们在向更大系统扩展、提高性能以及获得量子计算和模拟机会方面迈出了几步。一个悬而未决的问题是,我们能将这些棋盘式电路做多大,如果存在限制,我们是否能利用量子链路将许多棋盘式电路互连起来,从而构建更大的电路。"...PC版:https://www.cnbeta.com.tw/articles/soft/1381635.htm手机版:https://m.cnbeta.com.tw/view/1381635.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人