微塑料的年龄有多大?日本科学家揭开海洋微塑料年龄的新方法

微塑料的年龄有多大?日本科学家揭开海洋微塑料年龄的新方法从海洋中收集的微塑料样品。长度小于5毫米的塑料碎片被归类为微塑料。比例尺显示长度为2000微米或2毫米。资料来源:九州大学/旭化成公司应用他们的新方法,研究人员估计了从北太平洋的近岸和离岸地点收集的微塑料的年龄。他们的结果显示,近岸的微塑料的年龄从0到5年不等,而来自离岸地点的微塑料的年龄在1到3年之间。他们的研究结果最近发表在《海洋污染公报》杂志上。大久保博士通过显微镜观察研究微塑料样品。长度小于5毫米的塑料碎片被归类为微塑料。资料来源:九州大学/旭化成公司在从湖泊到海洋的海洋环境中,塑料是最丰富的污染物类型。当塑料垃圾暴露在环境中时,它们最终会被分解和碎裂。分解到长度小于5毫米的塑料垃圾被称为"微塑料"。"微塑料污染被认为是一个全球性问题。在以前的一项研究中,我们发现有大约24万亿粒微塑料漂浮在海洋表层,"领导这项研究的九州大学应用力学研究所的AtsuhikoIsobe教授解释说。"然而,我们对它对环境或生物的影响仍然知之甚少。我们的另一个大问题是,微塑料在海洋中漂移了多长时间。"IsobeAtsuhiko教授和收集从上层海洋收集的微塑料样本。资料来源:九州大学/矶部实验室为了弄清在海洋中发现的微塑料可以有多老,Isobe和他的团队首先调查了什么指标可以用来测量微塑料的年龄。"塑料中最常见的材料被称为聚乙烯。我们知道,当聚乙烯与环境相互作用时,它会氧化和降解,"旭化成公司的研究员、该研究的第一作者RieOkubo解释说。"这种降解水平可以通过材料分子量的变化和一种叫做羰基指数的东西来测量。简单地说,当聚乙烯降解时,其羰基指数增加,分子量减少。AtsuhikoIsobe教授和工作人员在上层海洋中收集微塑料样本。上层海洋的测量范围是距离水面一米的地方。Credit:KyushuUniversity/IsobeLab当然这还不够。由于微塑料被暴露在各种环境中,该团队还需要对温度和紫外线辐射如何影响塑料降解进行标准化。该团队首先对聚乙烯材料进行了一系列的暴露实验,并收集了关于紫外线和温度的各种组合如何影响材料的分子量和羰基指数的数据。研究小组发现,UVER--紫外线红血病辐射(一种对地面紫外线辐射的测量)和海水温度是造成塑料降解的两个最大因素。"我们收集到这些数据,然后开始把它应用于我们的微塑料样品。所有的样本都来自海洋上层,距离水面最多一米,"Okubo继续说道。"我们还从一系列地区收集微塑料。一些样品是在日本的近岸收集的,距离海岸线10到80公里不等。其他样品是在近海、北太平洋中部和菲律宾海收集的"。通过分析收集到的微塑料,该团队能够估计每个诱导性样本的年龄。他们发现,近岸微塑料的年龄从0到5岁不等,而离岸样本的年龄从1到3岁不等。"我们假设,近岸微塑料从0到5年不等的原因是它们经常被冲上岸,'存活'的时间比较长。另一方面,近海微塑料需要更长的时间才能到达海洋的这一部分,因此我们没有发现超过3年的微塑料,"Okubo解释说。"这些近海的微塑料也可能通过沉降到水域深处而被从上层海洋中清除。"研究人员希望这种新方法将使他们更好地了解微塑料是如何在环境中产生和传播的。这些数据也将有助于开发更精确的模拟,以追踪整个海洋的微塑料。Isobe总结说:"我们对微塑料的研究和理解仍然非常新,由于这些数据,我们对微塑料的基本科学有了更多的了解。我们的下一步将是研究像海浪和海流这样的机械刺激是如何降解塑料的,这样我们就可以收集到更多的精确数据。...PC版:https://www.cnbeta.com.tw/articles/soft/1362139.htm手机版:https://m.cnbeta.com.tw/view/1362139.htm

相关推荐

封面图片

科学家发现海洋会将微塑料释放到大气中

科学家发现海洋会将微塑料释放到大气中奥尔登堡大学海洋环境化学与生物学研究所(ICBM)博士生、论文第一作者伊莎贝尔-戈斯曼(IsabelGoßmann)说:"通过我们的研究,我们首次展示了海洋大气中不同类型塑料的质量负荷数据。研究小组是在2021年乘坐"海因克号"考察船进行考察期间采集这些样本的。"最北端的目的地是熊岛,这是斯瓦尔巴群岛最南端的岛屿,位于大陆和群岛最大岛屿斯匹次卑尔根岛的中间。研究小组使用两种不同的设备收集空气样本。这些装置主动抽入空气,安装在研究船船头12米高处。科学家们使用热解-气相色谱-质谱法对空气样本进行了分析。利用这种方法,他们能够通过热降解和选择性分析来识别和量化大气中不同类型的塑料。然后,他们进行了模型计算,重建了颗粒的来源和分布路径,每个颗粒的大小仅为千分之几毫米。分析结果显示,聚酯颗粒无处不在。所有样本中都检测到了聚对苯二甲酸乙二醇酯颗粒,这种颗粒可能是以纺织纤维的形式进入大气的。其他类型的塑料也存在,包括聚丙烯聚碳酸酯和聚苯乙烯。轮胎磨损颗粒,即行驶过程中特别是制动过程中轮胎磨损的微小碎片被确定为微塑料的另一个主要来源。研究人员测得每立方米空气中的微塑料浓度高达37.5毫微克(1毫微克=十亿分之一克)。"这些污染物无处不在。即使在偏远的极地地区,我们也能发现它们,"Goßmann强调说。"到目前为止,人们对海洋大气中包括轮胎磨损颗粒在内的微塑料污染水平知之甚少。"团队负责人Scholz-Böttcher说:"关于这些污染物在空气中浓度的研究屈指可数。我们的模型计算表明,海洋大气中的微塑料直接来自陆地和海洋。研究小组认为,漂浮在海面附近的塑料微粒是通过海雾和暴风雨天气中产生的爆裂气泡等进入大气层的。"微塑料会通过河流进入海水,但也会通过大气层--例如,微粒会被雨水冲出大气层。另一个潜在来源是船舶交通:在早前的一项研究中,肖尔茨-博特彻领导的研究小组证明,在开阔的北海,船舶上使用的油漆和涂料是微塑料的主要来源。在目前的研究中,空气样本中也发现了聚氨酯和环氧树脂等化学品,这些化学品通常用于船舶油漆和涂料中。...PC版:https://www.cnbeta.com.tw/articles/soft/1377935.htm手机版:https://m.cnbeta.com.tw/view/1377935.htm

封面图片

日研究员开发新方法 测量土壤中微塑料污染含量

日研究员开发新方法测量土壤中微塑料污染含量受人类活动影响,纳米和微米级微塑料(N/MP)污染广泛存在于土壤、海洋、空气中甚至人体内,其危害日渐严重。日本研究人员近期开发出一种新方法,利用光谱法在两种波长下测量不同土壤类型中的N/MP含量。新华社报道,环境中很大一部分纳米和微米级微塑料(N/MP)存在于土壤中,了解土壤中N/MP的分布和迁移对于应对其威胁至关重要。目前要测量土壤中N/MP的含量,需要先将土壤中的N/MP与有机物等分离开来,再利用拉曼光谱等方法检测。但现有方法对技术要求较高且分辨率有限,此外在分离土壤过程中常会丢失一部分N/MP,导致测量不准。日本早稻田大学等机构研究人员开发出一种新的可测量土壤中N/MP含量的光谱法,无需将土壤中的有机物分离出去。其原理是使特定波长的光穿过样本,利用N/MP和土壤颗粒吸收光谱差异来量化N/MP。因此找到合适的波长来区分N/MP和土壤颗粒十分关键。[Media]研究人员将六种在粒径分布、有机物含量等方面呈不同特性的干土壤样本制成悬浮液,并与聚苯乙烯(一种常见微塑料成分)纳米颗粒混合,形成六种不同的模拟含N/MP污染物的土壤悬浮液。N/MP含量均保持在每升五毫克。然后使用分光光度计测量这些土壤悬浮液在200纳米至500纳米波长范围的吸收光谱,并据此确定干土壤中N/MP的含量。随后找出测量N/MP的两种波长的最佳组合。研究显示,使用220纳米至260纳米和280纳米至340纳米波长组合时,六个样本的误差最低,因此适合测量不同土壤类型中的N/MP含量。研究人员还创建了土壤悬浮液中N/MP含量与添加到干土壤样本中的N/MP含量之间的校准曲线,从而能准确估算干土壤中N/MP的含量。研究成果近期发表在《生态毒理学与环境安全》杂志上。研究人员表明,该方法可以用作土壤中N/MP含量的初步评估工具,以帮助人们进一步了解N/MP在土壤中的分布和迁移。[Media]2024年6月23日11:57AM

封面图片

科学家开发出阻止癌症生长的新方法 挑战现有范式

科学家开发出阻止癌症生长的新方法挑战现有范式凯斯西储大学的生物化学家们正在集中研究一种驱动癌症的关键蛋白质的降解问题;这是研究领域的一个重大转变。这种蛋白质就是LSD1(赖氨酸特异性组蛋白去甲基化酶1A),它在人体细胞内起着交通警察的作用。它在胚胎发育过程中控制基因活动,并在整个生命过程中调节基因表达。近年来,科学家们还发现,LSD1的过度表达--例如产生过多的蛋白质--会导致癌症和心脏病的发生。最近,一些研究人员希望通过阻止LSDI的催化活性来减缓癌症的生长--LSDI的化学反应会刺激细胞生长,但似乎也会导致其过度表达。但生物化学助理教授曹开祥正带领一个团队挑战这一假设:医学院的研究人员认为,他们可以通过降解整个LSD1蛋白,而不仅仅是短路导致其过度表达的化学反应,来取得更大的成功,从而减缓或阻止干细胞中癌症的生长。他们的研究最近发表在《自然-通讯》(NatureCommunications)杂志上。曾诚艾玛莉-库克(EmmaleeCooke)曹说:"我们需要一种真正精确有效的方法来靶向这些蛋白质,我们的研究表明,停止催化可能在15%的情况下有效(阻止过度表达),而我们的方法接近80%。因此,如果我们能开发出一种LSD1的降解剂,我们就能帮助病人减少治疗的次数--即使我们不能完全治愈癌症"。他和他的团队对LSD1主要以催化无关的方式发挥作用感到惊讶,但既然他们已经为研究界提供了"理论基础,这将是治疗这些疾病的更有效方法",他们将开始进一步测试,首先在癌症组织中测试,然后是动物模型,最终是人体试验。他说:"这就是未来--加入降解剂,就能完全杀死蛋白质。这项技术已经存在,因为其他研究人员已经对其他蛋白质进行过研究,但还没有对LSD1进行过研究。"...PC版:https://www.cnbeta.com.tw/articles/soft/1401491.htm手机版:https://m.cnbeta.com.tw/view/1401491.htm

封面图片

一种生活在海洋中的真菌可以分解塑料聚乙烯

一种生活在海洋中的真菌可以分解塑料聚乙烯塑料颗粒(红色)被海洋真菌Parengyodontiumalbum定殖。图片来源:AnnikaVaksmaa/NIOZ真菌Parengyodontium与其他海洋微生物一起生活在海洋塑料垃圾的薄层中。荷兰皇家海洋研究所(NIOZ)的海洋微生物学家发现,这种真菌能够分解塑料聚乙烯(PE)的颗粒,聚乙烯是海洋中含量最多的塑料。NIOZ的研究人员与乌得勒支大学、海洋清理基金会以及巴黎、哥本哈根和瑞士圣加仑的研究机构的同事合作。这一发现使这种真菌加入了一个非常短的塑料降解海洋真菌名单:迄今为止只发现了四种。人们已经知道有更多的细菌能够降解塑料。准确地跟踪降解过程研究人员在北太平洋的塑料污染热点地区寻找塑料降解微生物。从收集到的塑料垃圾中,他们通过在实验室中含有标记碳的特殊塑料上生长来分离海洋真菌。Vaksmaa:“这些所谓的13C同位素在食物链中仍然可追溯。它就像一个标签,使我们能够跟踪碳的去向。然后我们可以在降解产物中追踪它。”Vaksmaa对这一新发现感到兴奋:“这项研究在科学上的突出之处在于,我们可以量化降解过程。”在实验室里,Vaksmaa和她的团队观察到P.album对PE的分解速度约为每天0.05%。“我们的测量还表明,真菌在分解聚乙烯时不会使用太多来自聚乙烯的碳。P.album使用的大部分PE被转化为二氧化碳,真菌再次排出二氧化碳。”虽然二氧化碳是一种温室气体,但这一过程并不会带来新的问题:真菌释放的二氧化碳量与人类呼吸时释放的二氧化碳量一样少。只有在紫外线的作用下研究人员发现,阳光的存在对真菌利用聚乙烯作为能量来源至关重要。Vaksmaa:“在实验室中,P.album只能分解暴露在紫外线下至少很短时间的PE。这意味着在海洋中,真菌只能降解最初漂浮在海面附近的塑料,”Vaksmaa解释说。“我们已经知道,紫外线本身会机械地分解塑料,但我们的研究结果表明,它也会促进海洋真菌对塑料的生物分解。”还有其他真菌由于大量不同的塑料在暴露在阳光下之前会沉入更深的层,P.album将无法将它们全部分解。Vaksmaa预计,在海洋深处,还有其他未知的真菌也能降解塑料。“海洋真菌可以分解由碳组成的复杂材料。海洋真菌的数量非常多,所以除了目前发现的四种海洋真菌外,很可能还有其他种类的海洋真菌也有助于塑料的降解。关于塑料降解如何在更深层发生的动力学,还有很多问题,”Vaksmaa说。塑料汤寻找塑料降解生物迫在眉睫。每年,人类生产超过4000亿公斤的塑料,预计到2060年,这一数字将至少增加两倍。大部分塑料垃圾最终都进入了海洋:从极地到热带,它们漂浮在地表水中,到达更深的海洋,最终落在海底。NIOZ的首席作者AnnikaVaksmaa说:“大量塑料最终进入亚热带环流,海水几乎静止的海洋中的环状洋流。这意味着一旦塑料被运到那里,就会被困在那里。仅太平洋的北太平洋副热带环流就已经积累了大约8000万公斤的漂浮塑料,而北太平洋副热带环流只是全球六大环流之一。”...PC版:https://www.cnbeta.com.tw/articles/soft/1433671.htm手机版:https://m.cnbeta.com.tw/view/1433671.htm

封面图片

新型植物塑料释放的微塑料减少9倍

新型植物塑料释放的微塑料减少9倍最新研究表明,植物基塑料在海洋环境中释放的微塑料远远少于传统塑料,这表明植物基塑料可能是一种更环保的选择。不过,要全面评估它们的影响,继续开展研究至关重要。最近的一项研究发现,一种新型植物基塑料材料在阳光和海水的作用下释放的微塑料比传统塑料少九倍。这项研究由朴茨茅斯大学和比利时法兰德斯海洋研究所(VLIZ)的研究人员共同完成,他们考察了两种不同类型的塑料在恶劣条件下的降解情况。一种由天然原料制成的生物基塑料材料在强烈的紫外线和海水中暴露76天(相当于欧洲中部地区24个月的日晒)后,其耐受性优于由石油衍生物制成的传统塑料。该大学机械与设计工程学院的机械工程学教授、RevolutionPlastics的成员HomDhakal说:"生物基塑料作为传统塑料的替代品正受到越来越多的关注,但人们对其在海洋环境中造成微塑料污染的潜在来源知之甚少。"HomDhakal教授。资料来源:朴茨茅斯大学"了解这些材料在极端环境中的表现非常重要,这样我们就能预测它们在海洋应用中(如建造船体)的工作情况,以及它们可能对海洋生物产生的影响。通过了解不同类型塑料对环境的影响,我们可以做出更好的选择来保护我们的海洋"。根据国际塑料海洋组织(PlasticOceansInternationalOrganization)的数据,每天每分钟都有相当于一卡车的塑料被倒入海洋。当这些塑料垃圾暴露在环境中时,就会分解成小于5毫米的微粒。这些微粒被称为"微塑料",已在大多数海洋生态系统中观察到,对水生生物构成严重威胁。Dhakal教授解释说:"我们希望将不可生物降解且难以回收利用的传统工业聚合物聚丙烯与可生物降解的聚合物聚乳酸(PLA)进行对比。尽管我们的研究结果表明,聚乳酸释放的微塑料较少,这意味着使用植物性塑料而不是油性塑料似乎是减少海洋塑料污染的一个好主意,但我们需要小心,因为微塑料仍然明显在释放,这仍然是一个令人担忧的问题。"研究还发现,释放出的微小塑料碎片的大小和形状取决于塑料的类型。与植物基塑料相比,传统塑料释放出的碎片更小,纤维状的形状也更少。Dhakal教授补充说:"总的来说,我们的研究为了解不同类型塑料在环境压力下的行为提供了宝贵的见解,这对我们今后解决塑料污染问题非常重要。我们显然需要继续开展研究并采取积极措施,以减轻微塑料对海洋生态系统的影响。"编译来源:ScitechDailyDOI:10.1016/j.ecoenv.2024.115981...PC版:https://www.cnbeta.com.tw/articles/soft/1432153.htm手机版:https://m.cnbeta.com.tw/view/1432153.htm

封面图片

科学家首次在考古土壤样本中发现微塑料污染的证据

科学家首次在考古土壤样本中发现微塑料污染的证据研究小组在七米多深的沉积物中发现了微小的微塑料颗粒,这些样本的年代可以追溯到公元一世纪或二世纪初,发掘时间为20世纪80年代末。原地保护考古学一直是一代人管理历史遗址的首选方法。然而,研究小组表示,这些发现可能会促使人们重新思考,因为微小的颗粒可能会损害保存下来的遗迹。微塑料是微小的塑料颗粒,从1微米(千分之一毫米)到5毫米不等。微塑料的来源很广泛,有破碎的较大塑料碎片,也有在塑料制造过程中使用的树脂颗粒,在2020年之前,美容产品中经常使用这些颗粒。这项研究发表在《全环境科学》杂志上,由约克大学和赫尔大学共同完成,并得到了教育慈善机构约克考古学会的支持。研究的意义约克大学考古系的约翰-肖菲尔德(JohnSchofield)教授说:"这是一个重要的时刻,它证实了我们本应预料到的事实:以前被认为是原始考古沉积物的地方,调查的时机已经成熟,但事实上却受到了塑料的污染,其中包括20世纪80年代末采样和储存的沉积物。""我们熟悉海洋和河流中的塑料。但在这里,我们看到我们的历史遗产中含有有毒元素。这种污染在多大程度上损害了这些沉积物的证据价值,以及它们的国家重要性,这就是我们下一步要努力查明的问题"。研究人员在当代和存档样本中发现了16种不同的微塑料聚合物类型。资料来源:约克考古学会约克考古学会首席执行官大卫-詹宁斯补充说:"我们认为微塑料是一种非常现代的现象,因为我们真正听说微塑料是在最近20年,理查德-汤普森教授在2004年揭示,自20世纪60年代以来,随着战后塑料生产的蓬勃发展,微塑料已经在我们的海洋中普遍存在。这项新研究表明,这些微粒已经渗入考古沉积物中,而且与海洋一样,这种情况很可能在类似时期就已经发生,1988年在约克威灵顿行采集和存档的土壤样本中就发现了这些微粒"。研究在当代样本和存档样本中发现了16种不同的微塑料聚合物类型。"考古学关注的是微塑料如何损害考古沉积物的科学价值。我们保存最完好的遗迹--例如在铜门发现的维京人遗址--在持续1000多年的厌氧水涝环境中,有机材料保存得非常好。微塑料的存在会改变土壤的化学性质,可能会引入导致有机遗骸腐烂的元素。"戴维-詹宁斯补充说:"如果是这样的话,就地保护考古可能就不再合适了。"研究小组表示,鉴于这些人造化学物质对考古沉积物的潜在影响,进一步研究微塑料的影响将是考古学家的当务之急。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1427411.htm手机版:https://m.cnbeta.com.tw/view/1427411.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人