科学家发明有效地将废热转化为电能的新方法

科学家发明有效地将废热转化为电能的新方法美国国家标准与技术研究院(NIST)的研究人员制造了一种新型设备,可以显着促进热能转化为电能。如果完善,该技术可以帮助回收在美国以每年约1000亿美元的速度浪费的部分热能。由NIST研究员KrisBertness和她的合作者开发的新制造技术包括在硅晶片上沉积数十万个微小的氮化镓柱。然后从晶圆底面去除硅层,直到只剩下一层薄薄的材料。柱子和硅片之间的相互作用减缓了硅中的热量传输,使更多的热量能够转化为电流。Bertness和她在科罗拉多大学博尔德分校的合作者最近在AdvancedMaterials杂志上报告了这一发现。制造方法完善后,硅片就可以缠绕在蒸汽管或排气管上,将热排放转化为电能,为附近的设备供电或输送到电网。另一个潜在的应用是冷却计算机芯片。通过在硅膜上生长纳米柱,NIST的科学家和他们的同事在不降低电导率的情况下将热传导减少了21%,这一结果可以显着促进热能向电能的转化。在固体中,热能由声子携带,声子是晶格中原子的周期性振动。膜中声子的某些振动与纳米柱中的声子产生共振,从而减缓热传递。至关重要的是,纳米柱不会减慢电子的运动速度,因此导电率仍然很高,从而创造出一种优质的热电材料。图片来源:S.Kelley/NISTNIST-科罗拉多大学的研究基于德国物理学家ThomasSeebeck最先发现的一个奇怪现象。在1820年代初期,塞贝克正在研究两根金属丝,每根金属丝由不同的材料制成,两端连接在一起形成一个环。他观察到,当连接电线的两个连接点保持不同温度时,附近的罗盘针会偏转。其他科学家很快意识到偏转的发生是因为温差在两个区域之间感应出电压,导致电流从较热的区域流向较冷的区域。电流产生了使罗盘针偏转的磁场。从理论上讲,所谓的塞贝克效应可能是回收否则会损失的热能的理想方式。但是有一个主要障碍。一种材料必须导热性差,以保持两个区域之间的温差,同时又必须非常好地导电,以将热量转化为大量电能。然而,对于大多数物质来说,导热性和导电性是齐头并进的;不良的热导体会导致不良的电导体,反之亦然。在研究热电转换的物理过程中,科罗拉多大学的理论家马哈茂德侯赛因发现,这些特性可以在覆盖有纳米柱的薄膜中解耦——立柱的材料长度不超过百万分之几米,或大约一米-人类头发厚度的十分之一。他的发现促成了与Bertness的合作。Bertness、Hussein和他们的同事使用纳米柱成功地将硅片中的热导率与电导率解耦——这在任何材料中都是首次,也是实现热能高效转换为电能的里程碑。研究人员在不降低其电导率或改变塞贝克效应的情况下,将硅片的热导率降低了21%。在硅和其他固体中,原子受到化学键的约束,不能自由移动以传递热量。因此,热能的传输采用声子的形式——移动原子的集体振动。氮化镓纳米柱和硅片都携带声子,但纳米柱内的声子是驻波,被微小柱的壁固定,就像振动的吉他弦在两端固定一样。在硅片中传播的声子与纳米柱中的振动之间的相互作用会减慢传播的声子,使热量更难通过材料。这降低了热导率,从而增加了从一端到另一端的温差。同样重要的是,声子相互作用适应完成这一壮举,同时保持硅片的导电能力不变。该团队现在正在研究完全由硅制成的结构,并具有更好的热电热回收几何形状。研究人员希望展示足够高的热电转换率,使他们的技术在工业上具有经济可行性。...PC版:https://www.cnbeta.com.tw/articles/soft/1362827.htm手机版:https://m.cnbeta.com.tw/view/1362827.htm

相关推荐

封面图片

一种将光转化为电能的令人惊讶的新方法

一种将光转化为电能的令人惊讶的新方法波士顿学院的一个研究小组发现,光电流沿着Weyl半金属的一条晶轴流入(蓝色图示),并沿着垂直轴流出(黄色/橙色图示),这里表示的是该小组利用量子磁场传感器开发的一种新技术来观察电流的流动情况。资料来源:波士顿学院Zhou实验室许多当代技术,如照相机、光纤系统和太阳能电池板都依赖于将光转换为电信号。然而,在大多数材料中,简单地将光照在其表面并不能产生电,因为没有特定的电的流动方向。为了克服这些限制并创造新的光电子装置,研究人员正在研究韦尔半金属中电子的独特特性。"大多数光电设备需要两种不同的材料来创造空间上的不对称性,"Zhou说,他与不列颠哥伦比亚省的八位同事和新加坡南洋理工大学的两位研究人员合作。"研究表明,单一材料内的空间不对称性,特别是其热电传输特性的不对称性可以引起自发的光电流。"该团队研究了二碲化钨和四碲化钽材料,这两种材料都属于Weyl半金属的范畴。研究人员怀疑这些材料将是产生光电流的良好候选材料,因为它们的晶体结构是固有的反转不对称的;也就是说,晶体不会通过围绕一个点的反转方向映射到自身。Zhou的研究小组着手了解为什么Weyl半金属能有效地将光转化为电能。以前的测量只能确定从一个设备出来的电量,就像测量有多少水从水槽流进排水管一样。为了更好地了解光电流的来源,团队试图将设备内的电流可视化--类似于制作水槽中的水流漩涡图。"作为项目的一部分,我们开发了一种新技术,使用称为钻石中的氮空穴中心的量子磁场传感器,对光电流产生的局部磁场进行成像,并重建光电流流动的全部流线,"手稿的主要作者,研究生WangYuxuan说。研究小组发现,电流在光照到材料的地方以四倍的涡流模式流动。研究小组进一步观察了循环流动模式如何被材料的边缘所改变,并发现边缘的精确角度决定了流出设备的总光电流是正的、负的还是零。Zhou说:"这些从未见过的流动图像使我们能够解释,光电流的产生机制竟然是由于各向异性的光热电效应--也就是说,沿着Weyl半金属的不同面内方向,热量如何转化为电流的差异。"各向异性热电的出现并不一定与Weyl半金属所显示的反转不对称性有关,因此,可能存在于其他类别的材料。这一发现为寻找其他高光敏性材料开辟了一个新的方向,它展示了量子化传感器对材料科学中开放问题的颠覆性影响。未来的项目将使用独特的光电流流动显微镜来了解其他奇异材料中光电流的起源,并推动检测灵敏度和空间分辨率的极限。...PC版:https://www.cnbeta.com.tw/articles/soft/1347419.htm手机版:https://m.cnbeta.com.tw/view/1347419.htm

封面图片

新方法可在数秒内将渔业废弃物转化为有价值的纳米材料

新方法可在数秒内将渔业废弃物转化为有价值的纳米材料由于碳基纳米材料的低毒性、化学稳定性和非凡的电和光学特性,它们正被越来越多地用于电子、能源转换和存储、催化和生物医学。CNO,即碳纳米离子,也绝不是一个例外。1980年首次描述的CNO是由富勒烯的同心壳组成的纳米结构,类似于笼中笼。它们有几个理想的品质,包括大表面积和高导电性和导热性。PC版:https://www.cnbeta.com/articles/soft/1323465.htm手机版:https://m.cnbeta.com/view/1323465.htm

封面图片

量子突破:科学家开发出操纵奇异材料的新方法

量子突破:科学家开发出操纵奇异材料的新方法上图展示了一种控制材料中量子态的新方法。电场诱导铁电基底发生极化转换,从而产生不同的磁性和拓扑状态。图片来源:MinaYoon、FernandoReboredo、JacquelynDeMink/ORNL、美国能源部拓扑材料发现于20世纪80年代,是一种新的材料阶段,其发现者于2016年获得诺贝尔奖。仅利用电场,ORNL的研究人员就能将普通绝缘体转化为磁性拓扑绝缘体。这种奇特的材料允许电流流过其表面和边缘,而没有能量耗散。电场会引起物质状态的改变。领导这项研究的ORNL的MinaYoon说:"这项研究可以带来许多实际应用,如下一代电子学、自旋电子学和量子计算。"这些物质可能会带来高速、低功耗的电子产品,与目前的硅基电子产品相比,它们能耗更低、运行更快。ORNL的科学家们在《二维材料》(2DMaterials)上发表了他们的研究成果。...PC版:https://www.cnbeta.com.tw/articles/soft/1383317.htm手机版:https://m.cnbeta.com.tw/view/1383317.htm

封面图片

成像革命:科学家用超成像新方法突破光学衍射极限

成像革命:科学家用超成像新方法突破光学衍射极限超级透镜在实频和合成复频激励下的成像示意图。同一物体在不同的实频照明下通过超级透镜成像时,会产生不同程度的模糊图像,没有一个实频图像能辨别出物体的真实外观。将多个单频图像的场振幅和相位组合起来,最终就能获得清晰的图像。资料来源:香港大学成像在生物学、医学和材料科学等许多领域都发挥着重要作用。光学显微镜利用光对微小物体进行成像。然而,传统显微镜最多只能分辨光波长数量级的特征尺寸,这就是所谓的衍射极限。为了克服衍射极限,伦敦帝国理工学院的约翰-彭德里爵士提出了超透镜的概念,超透镜可以由负指数介质或银等贵金属制成。随后,香港大学现任校长张翔教授与他当时在加州大学伯克利分校的团队一起,利用银薄膜和银/电介质多层堆栈实验证明了超成像技术。这些工作广泛推动了超级透镜技术的发展和应用。遗憾的是,所有超透镜都不可避免地存在光学损耗,它会将光能转化为热能。这严重影响了超透镜等光学设备的性能,因为它们依赖于光波所携带信息的忠实传递。字母"H"的多实频和复频成像图案。资料来源:香港大学过去三十年来,光学损耗一直是制约纳米光子学发展的主要限制因素。如果能解决这个问题,包括传感、超成像和纳米光子电路在内的许多应用都将受益匪浅。论文通讯作者、港大物理系临时系主任张爽教授解释研究重点时说:"为了解决一些重要应用中的光学损耗问题,我们提出了一个实用的解决方案--利用新颖的合成复波激励获得虚拟增益,然后抵消光学系统的固有损耗。作为验证,我们将这种方法应用于超级透镜成像机制,从理论上显著提高了成像分辨率。我们使用双曲超材料制成的超透镜在微波频率范围内和偏振子超材料制成的超透镜在光学频率范围内进行实验,进一步证明了我们的理论。"论文第一作者、香港大学博士后关复新博士补充说:"不出所料,我们获得了与理论预测一致的出色成像结果。"克服光损耗的多频方法在这项研究中,研究人员采用了一种新颖的多频方法来克服损耗对超成像的负面影响。复频波可用来提供虚拟增益,以补偿光学系统中的损耗。复频是什么意思?波的频率是指波在时间上的振荡速度。将频率视为实数是很自然的。有趣的是,频率的概念可以扩展到复数域,在复数域中,频率的虚部也具有明确的物理意义,即波在时间上放大或衰减的速度。因此,对于复频波来说,波的振荡和放大是同时发生的。对于虚部为负(正)的复频,波在时间上会衰减(放大)。实频波(a)、复频波(b)和截断复频波(c)的电场剖面图。由多个实频的线性组合合成的截短复频波(d)。资料来源:香港大学当然,理想的复频波并不符合物理原理,因为当时间达到正无穷大或负无穷大时,复频波就会发散,这取决于其虚部的符号。因此,任何现实中的复频波都需要在时间上截断,以避免发散。直接基于复频波的光学测量需要在时域中进行,这将涉及复杂的时间门控测量,因此迄今为止尚未在实验中实现。研究小组利用数学工具傅立叶变换,将截断的CFW分解为不同实际频率的多个分量,从而大大方便了CFW在超成像等各种应用中的实现。通过以固定间隔对多个实际频率进行光学测量,就可以通过数学方法将实际频率的光学响应组合起来,构建出系统在复数频率下的光学响应。使用在光频下工作的碳化硅超级透镜进行超级成像。复频测量的空间分辨率远高于实频测量。SEM图像显示了物体的性能。资料来源:香港大学作为概念验证,研究小组首先使用双曲超材料进行微波频率的超成像。双曲超材料可以携带波矢非常大(或波长非常小)的波,能够传输特征尺寸非常小的信息。然而,波矢越大,光波对光损耗就越敏感。因此,在存在损耗的情况下,这些小尺寸特征的信息会在双曲超材料内部的传播过程中丢失。研究人员的研究表明,通过适当组合在不同实际频率下测量到的模糊图像,就能在复杂频率下形成具有深亚波长分辨率的清晰图像。研究小组将这一原理进一步扩展到光学频率,采用了一种由碳化硅声子晶体制成的光学超级透镜,其工作波长为10微米左右的远红外线。在声子晶体中,晶格振动可以与光耦合,从而产生超成像效果。然而,损耗仍然是空间分辨率的限制因素。虽然在所有实际频率下成像的空间分辨率都受到损耗的限制,如纳米级孔洞的模糊图像所示,但利用由多个频率分量组成的合成CFW,可以获得超高分辨率成像。这项工作为克服纳米光子学中的一个老大难问题--光学系统中的光损耗提供了解决方案。该论文的另一位通讯作者、香港大学校长兼物理与工程学讲座教授张翔教授说:"这种合成复频方法很容易推广到其他应用领域,包括分子传感和纳米光子集成电路。他称赞这是一个了不起的、普遍适用的方法,这可以用来解决其他波系统的损耗问题,包括声波、弹性波和量子波,将成像质量提升到一个新的高度。"...PC版:https://www.cnbeta.com.tw/articles/soft/1389571.htm手机版:https://m.cnbeta.com.tw/view/1389571.htm

封面图片

科学家发明测量水环境中纳米尺度的极微小力的新方法

科学家发明测量水环境中纳米尺度的极微小力的新方法超分辨光子力显微镜,用于探测纳米粒子与表面之间的超弱相互作用力。资料来源:LeiDing这项新技术采用了超分辨光子力显微镜(SRPFM),能够检测到水中小至108.2牛顿的力--如此微小的力相当于测量一个病毒的重量。北京航空航天大学的首席研究员王凡教授说,这种超灵敏测量的关键在于使用掺镧纳米粒子,通过光学镊子将其捕获,然后用来探测生物系统内的微小作用力。他说:"了解这些微小的力对于研究生物力学过程至关重要,而生物力学过程是活细胞工作的基础。到目前为止,由于探针发热和信号微弱等因素,在液体环境中高精度测量如此微小的力是一项重大挑战。"王及其团队开发的SRPFM技术通过采用先进的纳米技术和计算技术解决了这些难题。通过利用神经网络驱动的超分辨率定位技术,研究小组能够精确测量纳米粒子在流体介质中如何受到微小力的作用而发生位移。这项研究的共同第一作者、皇家墨尔本理工大学的丁磊博士说,这项创新不仅提高了力测量的分辨率和灵敏度,还最大限度地降低了捕获纳米粒子所需的能量,从而减少了对生物样本的潜在损害。丁说:"我们的方法可以检测到低至每平方根带宽1.8飞牛顿的力,这接近热噪声的理论极限。"这项研究的影响是巨大的,共同第一作者、北京航空航天大学的单旭晨博士补充道。单说:"通过提供一种在分子水平上测量生物事件的新工具,这项技术可以彻底改变我们对一系列生物和物理现象的理解。这包括从蛋白质如何在人体细胞内发挥作用到早期检测疾病的新方法等方方面面。单该研究还探索了该技术在测量作用于单个纳米粒子的电泳力以及DNA分子与界面之间的相互作用力方面的应用,这对于开发先进的生物医学工程技术至关重要。研究小组的发现不仅为新的科学发现铺平了道路,而且还可能应用于开发新的纳米技术工具和提高生物医学诊断的灵敏度。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1436099.htm手机版:https://m.cnbeta.com.tw/view/1436099.htm

封面图片

科学家开发出制造新一代太阳能电池的新方法

科学家开发出制造新一代太阳能电池的新方法包括宾夕法尼亚州立大学教师NelsonDzade在内的一个国际研究小组报告了一种新方法,这种方法可以制造出更耐用的太阳能电池,同时还能高效地将太阳光转化为电能。资料来源:NelsonDzade包括宾夕法尼亚州立大学教师NelsonDzade在内的科学家们在《自然-能源》杂志上报告了他们的新方法,该方法可制造出更耐用的过氧化物太阳能电池,并仍能实现21.59%的高效率将太阳光转化为电能。约翰和威利-莱昂家族能源与矿产工程系能源与矿产工程助理教授、本研究的合著者德扎德说,透辉石是一种很有前途的太阳能技术,因为与传统的硅材料相比,这种电池可以在室温下用更少的能量制造,使其生产成本更低,更具可持续性。科学家们说,但用于制造这些设备的主要候选材料--有机-无机混合金属卤化物,含有易受潮、氧和热影响的有机成分,暴露在真实世界的条件下会导致性能迅速下降。一种解决方案是转而使用碘化铯铅等全无机包晶材料,这种材料具有良好的电气性能和对环境因素的超强耐受性。不过,这种材料是多晶体的,也就是说,它有多个具有不同晶体结构的相。科学家们说,其中两种光活性相对于太阳能电池来说是好的,但它们在室温下很容易转化为不良的非光活性相,从而引入缺陷,降低太阳能电池的效率。突破性的相异质结技术科学家们将碘化铯铅的两种光活性多晶体结合起来,形成了一种相异质结--它可以抑制向不良相的转变。异质结是通过堆叠具有不同光电特性的不同半导体材料形成的,就像太阳能电池中的层一样。太阳能设备中的这些结可以进行定制,以帮助从太阳中吸收更多能量,并更高效地将其转化为电能。Dzade说:"这项工作的美妙之处在于,它表明利用同一种材料的两种多晶体来制造相异质结太阳能电池是一种可行的方法。它提高了材料的稳定性,防止了两相之间的相互转换。两相之间形成的相干界面可使电子轻松流过设备,从而提高功率转换效率。这就是我们在这项工作中所展示的。"研究人员制造出的器件实现了21.59%的功率转换效率,属于此类方法中的最高水平,而且稳定性极佳。不仅如此,该装置在环境条件下储存200小时后,仍能保持90%以上的初始效率。Dzade说:"当从实验室扩展到实际太阳能模块时,我们的设计在太阳能电池面积超过7平方英寸(18.08平方厘米)的情况下,功率转换效率达到了18.43%。这些初步结果凸显了我们的方法在开发超大型过氧化物太阳能电池模块和可靠评估其稳定性方面的潜力。"研究人员对在原子尺度上对异质结的结构和电子特性进行了建模,并发现将两种光活性相结合在一起可以形成稳定而连贯的界面结构,从而促进高效的电荷分离和转移--这是实现高效太阳能设备的理想特性。Dzade在韩国全南大学的同事开发出了制造该设备的独特双沉积方法--一种相用热风技术沉积,另一种相用三源热蒸发技术沉积。韩国全南大学研究教授、论文第一作者SawantaS.Mali说,在沉积过程中添加少量分子和有机添加剂,进一步提高了器件的电性能、效率和稳定性。约翰和威利-莱昂家族能源与矿物工程系能源与矿物工程助理教授、该研究的共同作者尼尔森-德扎德(NelsonDzade)说:"我们相信,我们在这项工作中开发的双沉积技术将对制造高效、稳定的过氧化物太阳能电池产生重要影响。"研究人员说,这种双重沉积技术可以为开发更多基于全无机包晶或其他卤化物包晶成分的太阳能电池铺平道路。研究人员说,除了将该技术扩展到不同的成分外,未来的工作还包括使目前的相位异质结电池在实际条件下更加耐用,并将其扩展到传统太阳能电池板的尺寸。Dzade说:"有了这种方法,我们相信在不久的将来,这种材料的效率应该可以超过25%。一旦我们做到了这一点,商业化就指日可待了。...PC版:https://www.cnbeta.com.tw/articles/soft/1392487.htm手机版:https://m.cnbeta.com.tw/view/1392487.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人