韦伯望远镜揭开螺旋星系NGC 5068恒星形成过程的秘密

韦伯望远镜揭开螺旋星系NGC5068恒星形成过程的秘密在詹姆斯-韦伯太空望远镜拍摄的这张图片上,尘埃和明亮的星团组成了一道精致的轨迹。这些明亮的气体和恒星卷须属于条形螺旋星系NGC5068,在这张图片的左上方可以看到其明亮的中央条形,这是韦伯的两个仪器的合成图。美国宇航局局长比尔-纳尔逊于6月2日在波兰华沙哥白尼科学中心与学生举行的活动中透露了这一图像。在这张由詹姆斯-韦伯太空望远镜的MIRI仪器拍摄的棒状螺旋星系NGC5068的图像中,螺旋星系的尘埃结构和包含新形成的星团的发光气体泡尤为突出。三颗小行星的轨迹闯入了这张图片,表现为蓝绿色的小红点。小行星出现在这样的天文图像中,是因为它们比遥远的目标更接近望远镜。当韦伯捕捉到天文物体的几张图像时,小行星就会移动,所以它在每一帧图像中显示的位置略有不同。在诸如这张来自MIRI的图像中,它们会更明显一些,因为许多恒星在中红外波长下并不像在近红外或可见光下那么明亮,所以小行星在恒星旁边更容易看到。一条线索就在银河系的条形图下面,还有两条在左下角。资料来源:ESA/Webb,NASA和CSA,J.Lee和PHANGS-JWST团队NGC5068距离地球约2000万光年,位于室女座。这个星系中央明亮的恒星形成区域的图像是创建天文宝库活动的一部分,宝库指的是是对附近星系中恒星形成的观测。这些观测对天文学家来说特别有价值,原因有二。首先是因为恒星的形成是天文学中许多领域的基础,从恒星之间的脆弱等离子体的物理学到整个星系的演变。通过观察附近星系中恒星的形成,天文学家们希望通过韦伯提供的一些首批数据来启动重大的科学进展。从詹姆斯-韦伯太空望远镜的NIRCam仪器上看到的这个条形螺旋星系NGC5068,上面布满了该星系的大量恒星,沿着其明亮的中央条形区域最为密集,同时还有被内部年轻恒星照亮的燃烧的红色气体云。这个星系的近红外图像被构成NGC5068核心的巨大的老式恒星聚集所填充。NIRCam的敏锐视觉使天文学家能够透过银河系的气体和尘埃来仔细检查它的恒星。密集而明亮的尘埃云沿着旋臂的路径分布:这些是HII区域,是氢气的集合体,新的恒星正在那里形成。年轻的、有活力的恒星将它们周围的氢气电离,形成了这种红色的光芒。资料来源:欧空局/韦伯,NASA和CSA,J.Lee和PHANGS-JWST团队韦伯的观测建立在使用包括哈勃太空望远镜和地面观测站在内的其他研究之上。韦伯收集了19个附近的成星星系的图像,然后天文学家可以将这些图像与哈勃的10000个星团的图像、甚大望远镜(VLT)对20000个成星发射星云的光谱图以及阿塔卡马大型毫米/亚毫米阵列(ALMA)识别的12000个黑暗、密集的分子云的观测相结合。这些观测跨越了电磁波谱,给了天文学家一个前所未有的机会来拼凑恒星形成的细枝末节。由于韦伯能够透过笼罩着新生恒星的气体和尘埃,它特别适合于探索恒星形成的过程。恒星和行星系统是在旋转的气体和尘埃云中诞生的,对于像哈勃或VLT这样的可见光观测站来说是不透明的。韦伯的两个仪器--MIRI(中红外仪器)和NIRCam(近红外相机)--在红外波长上的敏锐视觉使天文学家能够直接看到NGC5068中巨大的尘埃云,并捕捉到发生的恒星形成过程。这张图片结合了这两台仪器的能力,提供了一个真正独特的NGC5068的组成情况。...PC版:https://www.cnbeta.com.tw/articles/soft/1363483.htm手机版:https://m.cnbeta.com.tw/view/1363483.htm

相关推荐

封面图片

韦伯望远镜揭开120亿年前恒星形成星系的秘密

韦伯望远镜揭开120亿年前恒星形成星系的秘密詹姆斯-韦伯太空望远镜(JWST)拍摄的新图像让澳大利亚天文学家揭开了宇宙早期星系如何开始恒星形成爆炸的秘密。一些早期星系充斥着大量气体,它们发出的光亮超过了新出现的恒星。在一项新的研究中,天文学家发现了这些明亮的星系在大约120亿年前是多么的普遍。来自JWST的图像显示,宇宙早期几乎90%的星系都有这种发光气体,产生所谓的"极端发射线特征"。一个遥远的极端发射线星系的图像。由詹姆斯-韦伯太空望远镜(左)和哈勃太空望远镜(右)拍摄。该对比凸显了JWST图像的清晰度。资料来源:ARC三维全天空天体物理卓越中心(ASTRO3D)。"这些年轻星系中的恒星非常了不起,它们能产生恰到好处的辐射来激发周围的气体。这些气体反过来比恒星本身更加闪亮,"ARC三维全天空天体物理学卓越中心(ASTRO3D)和国际射电天文学研究中心(ICRAR)科廷大学节点的安舒-古普塔(AnshuGupta)博士说,他是描述这一发现的论文的第一作者。"直到现在,要了解这些星系是如何积累如此多的气体还很困难。我们的发现表明,这些星系中的每一个都至少有一个近邻星系。这些星系之间的相互作用会导致气体冷却,引发强烈的恒星形成,从而产生这种极端的发射特征。"观测早期宇宙星系的进展这一发现是一个生动的例子,说明JWST望远镜在研究早期宇宙方面提供了无与伦比的清晰度。"詹姆斯-韦伯望远镜的数据质量非常出色,"古普塔博士说。"它具有足够的深度和分辨率来观察早期星系周围的邻居和环境,当时宇宙只有20亿年的历史。利用这一细节,我们能够看到具有极端发射特征的星系和不具有极端发射特征的星系在邻近星系数量上的明显差异。"詹姆斯-韦伯太空望远镜(左)和哈勃太空望远镜(右)看到的目标星系。JWST图像前所未有的分辨率和清晰度,让我们可以识别出哈勃都无法看到的邻近星系(青色圆圈)。资料来源:ARC三维全天空天体物理卓越中心(ASTRO3D)。在此之前,我们很难清楚地看到宇宙诞生20亿年左右的星系。由于当时许多恒星尚未形成,可关注的星系数量较少,因此这项任务变得更加困难。古普塔博士说:"在JWST出现之前,我们只能真正了解大质量星系的情况,而这些星系大多处于非常密集的星系团中,因此研究起来比较困难。以当时的技术,我们无法观测到这项研究中95%的星系。詹姆斯-韦伯望远镜彻底改变了我们的工作。"一个遥远的极端发射线星系的图像。由詹姆斯-韦伯太空望远镜(左)和哈勃太空望远镜(右)拍摄。该对比凸显了JWST图像的清晰度。资料来源:ARC三维全天空天体物理卓越中心(ASTRO3D)。证实之前的假设ASTRO3D和哈佛大学及史密森尼天体物理学中心的副主任Tran说,这一发现证明了之前的假设。她说:"我们怀疑这些极端星系是早期宇宙中激烈相互作用的标志,但只有借助JWST的锐利目光,我们才能证实我们的预感。"这项研究依靠的是作为JWST高级深河外星系巡天(JADES)的一部分获得的数据,JADES正在利用深红外成像和多天体光谱探索宇宙中最早的星系。它为进一步深入了解宇宙开辟了道路。遥远的极发射线星系图像。詹姆斯-韦伯太空望远镜(左)和哈勃太空望远镜(右)所见。该对比凸显了JWST图像的清晰度。资料来源:ARC三维全天空天体物理卓越中心(ASTRO3D)。"这幅作品真正令人兴奋的地方在于,我们看到了最早的星系与最近形成的星系之间的发射线相似性,而且更容易测量。这意味着我们现在有了更多的方法来回答关于早期宇宙的问题,而这一时期在技术上是很难研究的,"第二作者、科廷大学/ICRAR和ASTRO3D的博士生RaviJaiswar说。"这项研究是我们星系演化计划的核心工作。通过了解早期星系的面貌,我们可以在此基础上回答构成我们地球上日常生活中一切的元素的起源问题,"ASTRO3D主任EmmaRyan-Weber教授说。...PC版:https://www.cnbeta.com.tw/articles/soft/1396735.htm手机版:https://m.cnbeta.com.tw/view/1396735.htm

封面图片

NASA韦伯太空望远镜捕捉到NGC 346恒星形成区域的虚幻景象

NASA韦伯太空望远镜捕捉到NGC346恒星形成区域的虚幻景象美国宇航局詹姆斯-韦伯太空望远镜的中红外仪器(MIRI)拍摄的NGC346新红外图像追踪了冷气体和尘埃的辐射。在这张图片中,蓝色代表硅酸盐和被称为多环芳烃(PAHs)的烟尘化学分子。该区域中心最亮、质量最大的恒星所加热的温暖尘埃发出的红色辐射更为弥散。明亮的斑块和细丝标志着拥有大量原恒星的区域。资料来源:NASA、ESA、CSA、STScI、NolanHabel(NASA-JPL)、PatrickKavanagh(梅努斯大学)由于宇宙尘埃是由硅和氧等重元素形成的,科学家预计SMC中不会含有大量尘埃。然而,新的MIRI图像以及1月份发布的韦伯近红外相机拍摄的NGC346图像显示该区域存在大量灰尘。在这张具有代表性的彩色图像中,蓝色卷须追踪了含有尘埃硅酸盐和烟灰化学分子(称为多环芳烃,简称PAH)的物质的排放。被该区域中心最亮、质量最大的恒星加热的温暖尘埃发出更弥散的红色发射光。中心左侧的弧可能是来自弧中心附近恒星的光的反射。(类似的、较暗的弧线出现在左下角和右上角,与恒星相关。)最后,明亮的斑块和细丝标志着具有大量原恒星的区域。研究小组寻找最红的恒星,并发现了1,001个精确光源,其中大多数是年轻的恒星,仍嵌在布满灰尘的茧中。通过结合近红外和中红外的韦伯数据,天文学家能够对这个动态区域内的恒星和原恒星进行更全面的普查。这些结果对我们理解数十亿年前存在的星系具有重要意义,当时的宇宙被称为“宇宙正午”,恒星形成处于高峰期,重元素浓度较低。...PC版:https://www.cnbeta.com.tw/articles/soft/1389551.htm手机版:https://m.cnbeta.com.tw/view/1389551.htm

封面图片

对于韦伯太空望远镜图像的深度分析揭开了新生恒星的面纱

对于韦伯太空望远镜图像的深度分析揭开了新生恒星的面纱来自莱斯大学和其他组织的天文学家深入研究了这张近红外图像的数据,这是美国宇航局詹姆斯-韦伯太空望远镜拍摄的首批图像之一。这张图片显示了天琴座中被称为"宇宙悬崖"的一个恒星形成区域。在这样的区域中,许多新生的恒星都被笼罩在厚厚的尘埃云中。韦伯的红外相机穿透了这些尘埃,使天文学家发现了以前没有发现的二十几颗新生恒星的蛛丝马迹。图片来源:NASA、ESA、CSA和STSCI。这项研究发表在12月的《皇家天文学会月刊》上,为天文学家们展示了最新的成果,以及他们未来将通过韦伯的近红外相机探索方式的更多想象力。该仪器的设计目的是透过星际尘埃云,这些尘埃云以前一直阻挡着天文学家对恒星孕育地的观察,特别是那些产生类似于地球太阳的恒星。物理学和天文学助理教授Reiter和来自加州理工学院、亚利桑那大学、伦敦玛丽女王大学和苏格兰爱丁堡的英国皇家天文台的合作者分析了韦伯的第一批宇宙悬崖图像的一部分,这是一个被称为NGC3324的星团中的恒星形成区域。物质从新生恒星的两极流走,形成快速移动的柱状物,犁过星云。气体和尘埃在这些外流的前面堆积起来,形成被称为"船头冲击"的波浪,就像在海洋航船的前缘形成的船头波一样。这张来自詹姆斯-韦伯太空望远镜的假色红外图像显示了分子氢的弓形冲击(红色)从南部船底座的一个名为宇宙悬崖的恒星形成区的新生恒星中流走。图片来源:NASA、ESA、CSA和STSCI。领导这项研究的Reiter说:"韦伯给我们提供的是一个时间快照,让我们看到在这个可能是宇宙中比较典型的角落里有多少恒星正在形成,而我们以前是无法看到的。"NGC3324位于夜空南部的天琴座,拥有几个著名的恒星形成区域,天文学家已经研究了几十年。在哈勃太空望远镜和其他天文台的图像中,该区域的许多细节已经被尘埃掩盖了。韦伯的红外相机是为了看穿这些区域的尘埃,并探测从非常年轻的恒星的两极喷出的气体和尘埃喷流。Reiter及其同事将注意力集中在NGC3324的一部分,在那里,以前只发现了几颗年轻的恒星。通过分析一个特定的红外波长,即4.7微米,他们发现了二十几个以前未知的来自年轻恒星的分子氢气外流。这些流出物的大小不一,但许多似乎来自于最终将成为像地球太阳一样的低质量恒星的原星。Reiter说:"这些发现既说明了望远镜有多敏感,也说明了在宇宙中甚至是安静的角落里有多少事情在发生。"莱斯大学的天文学家MeganReiter领导了一项对詹姆斯-韦伯太空望远镜最早的图像的"深潜"研究。这项研究揭示了天琴座NGC3324星团中二十几颗以前未被收录的年轻恒星的蛛丝马迹。图片来源:JeffFitlow/Rice大学在它们最初的一万年里,新生的恒星从它们周围的气体和灰尘中收集物质。大多数年轻的恒星通过从它们的两极向相反方向喷出的喷流,将其中一部分物质喷回太空。尘埃和气体堆积在喷流前面,喷流像扫雪车一样扫过星云的路径。婴儿恒星的一个重要成分,分子氢,被这些喷流卷起,在韦伯的红外图像中可见。研究报告的共同作者、亚利桑那大学的内森-史密斯说:"像这样的喷流是恒星形成过程中最令人兴奋的部分的标志。之前我们只在原星积极吸积的短暂时间内看到它们。"早期恒星形成的吸积期对天文学家来说特别难研究,因为它转瞬即逝--通常在一颗恒星数百万年童年的最早部分只有几千年。研究报告的合著者、加州理工学院的乔恩-莫尔斯说,像研究中发现的那些喷流"只有在你开始深入研究时才能看到--从每个不同的过滤器中剖析数据并单独分析每个区域。这就像找到埋藏的宝藏。""韦伯望远镜的尺寸也在这次发现中发挥了作用,在这之前那里看上去只是一个巨大的光桶,"Reiter说。"如果用一个较小的望远镜,我们可能会错过。而且它还为我们提供了非常好的角度分辨率。因此,我们得到了一定程度的清晰度,使我们能够看到相对清楚的特征,即使是在遥远的地区。"...PC版:https://www.cnbeta.com.tw/articles/soft/1336271.htm手机版:https://m.cnbeta.com.tw/view/1336271.htm

封面图片

詹姆斯-韦伯望远镜新照片显示了一个奇怪的螺旋星系

詹姆斯-韦伯望远镜新照片显示了一个奇怪的螺旋星系美国宇航局在7月发布了詹姆斯-韦伯太空望远镜的首批图像,而这个航天器还没有停下来。除了官方发布的图像,该望远镜捕获的原始数据也产生了惊人的材料。其中一张最新的图片来自一位天文学毕业生,为我们提供了大棒状螺旋星系的迷人景色。大棒状螺旋星系更正式地被称为NGC1365。它位于离地球约5600万光年的地方。该星系是一个恒星形成的星系,有一个积极进食的超大质量黑洞,类似于我们的银河系黑洞。这个星系也是面朝地球的,这让天文学家可以完美地看到它的双杠结构。Reddit用户u/SpaceGuy44根据詹姆斯-韦伯的原始数据处理了这张图片。NGC1365与我们的银河系非常相似。与银河系和其他条形螺旋星系不同的是,NGC1365有两条由老式恒星组成的条形结构,在它身上延伸。像大棒状螺旋星系这样令人着迷的星系,是由于气体、恒星和尘埃以不同的速度围绕星系中心的聚集而形成的,这导致物质形成较高和较低的密度。科学家们认为,NGC1365中的条状物可能是推动该星系内新星形成的部分原因。詹姆斯-韦伯太空望远镜背后的团队选择这个罕见的螺旋星系是因为它的潜力。SpaceGuy44处理的原始数据是在詹姆斯-韦伯炫耀其第一张全尺寸图像之前捕获的。因此,我们看到的是詹姆斯-韦伯最早捕获的一些数据。詹姆斯-韦伯在研究大棒状螺旋星系所具有的潜力令人惊讶。它还有可能探测到数百万光年之外系外行星上的水。PC版:https://www.cnbeta.com/articles/soft/1307395.htm手机版:https://m.cnbeta.com/view/1307395.htm

封面图片

NASA韦伯太空望远镜发现神秘星团尘埃带中的星体形成

NASA韦伯太空望远镜发现神秘星团尘埃带中的星体形成天文学家对这个区域进行了探测,因为SMC内的金属条件和数量类似于数十亿年前的星系,在宇宙中被称为"宇宙正午"的时代,当时恒星形成处于高峰期。大爆炸后约20至30亿年,星系正在以惊人的速度形成恒星。当时发生的恒星形成的焰火仍然塑造着我们今天看到的星系。大学空间研究协会的天文学家和研究小组的主要调查员玛格丽特-梅克斯纳说:"一个宇宙正午时期的星系不会像小麦哲伦云那样有一个NGC346;它将有成千上万个"像这样的恒星形成区。"但是,即使NGC346现在是其星系中唯一一个疯狂形成恒星的大规模星团,它也为我们提供了一个很好的机会来探测宇宙正午时分的条件。"通过观察仍在形成过程中的原生星,研究人员可以了解SMC中的恒星形成过程是否与我们在银河系中观察到的不同。以前对NGC346的红外研究主要集中在超过我们太阳质量的5到8倍的原生星上。爱丁堡皇家天文台英国天文学技术中心的奥利维亚-琼斯说:"有了韦伯,我们可以探测到重量较轻的原星,小到我们太阳的十分之一,看看它们的形成过程是否受到较低金属含量的影响。"随着恒星的形成,它们从周围的分子云中收集气体和尘埃,这些气体和尘埃在韦伯的图像中看起来更像是带状。这些物质聚集成一个吸积盘,为中心原星提供能量。天文学家已经探测到了NGC346内原星周围的气体,但是韦伯的近红外观测标志着他们第一次在这些盘中也探测到了尘埃。这张由韦伯近红外相机(NIRCam)拍摄的NGC346星团的图像,显示了罗盘箭头、比例尺和颜色键供参考。北方和东方的罗盘箭头显示了图像在天空中的方向。请注意,相对于地面地图上的方向箭头(从下往上看),天空中的北和东之间的关系是翻转的(从上面看)。右下角是一个标尺,标示为50光年,15帕秒。比例尺的长度大约是图像总宽度的五分之一。图像下方是一个颜色键,显示了哪些NIRCam滤镜被用来创建图像,以及每个滤镜的可见光颜色。从左到右,NIRCam滤光片是:F200W是蓝色;F277W是绿色;F335M是橙色,而F444W是红色。欧洲航天局的吉多-德-马奇(GuidoDeMarchi)说:"我们看到的不仅是恒星的组成部分,而且还有可能是行星的组成部分。而且,由于小麦哲伦云在宇宙正午时分具有与星系类似的环境,因此,岩质行星有可能在宇宙中比我们想象的更早形成。"该团队还有来自韦伯的NIRSpec仪器的光谱观测,他们正在继续分析,这些数据预计将提供新的见解,了解加入个别原恒星的物质,以及紧紧围绕原恒星的环境。这些结果于1月11日在美国天文学会第241次会议的一个新闻发布会上公布。这些观测是作为1227计划的一部分获得的。詹姆斯·韦伯太空望远镜是世界上最先进的太空科学观测站。它将揭开我们太阳系的秘密,探索其他恒星周围的遥远世界,并揭开我们宇宙的神秘结构和起源以及人类在其中的地位。该项目是由美国国家航空航天局领导的一项合作努力,欧洲航天局(ESA)和加拿大航天局也参与其中。...PC版:https://www.cnbeta.com.tw/articles/soft/1340027.htm手机版:https://m.cnbeta.com.tw/view/1340027.htm

封面图片

哈勃揭示隐藏着恒星形成奥秘的螺旋星系NGC 3059

哈勃揭示隐藏着恒星形成奥秘的螺旋星系NGC3059这幅图像中的条状螺旋星系NGC3059位于距离地球5700万光年的地方,是利用哈勃太空望远镜的数据和各种滤光片(包括窄带H-α滤光片)拍摄的。这种特殊的滤光片通过分离656.46纳米波长的H-α发射,是识别恒星形成区域的关键,而H-α发射是恒星形成过程的一个重要指标。资料来源:欧空局/哈勃和美国国家航空航天局,D.Thilker哈勃于2024年5月收集了用于合成这张图片的数据,这是一项研究多个星系的观测计划的一部分。所有的观测都使用了相同范围的滤光片:部分透明的材料,只允许非常特定波长的光线通过。滤光片在观测天文学中应用广泛,可以校准成允许极窄或较宽范围的光线通过。从科学的角度来看,窄带滤光片非常宝贵,因为某些波长的光与特定的物理和化学过程有关。例如,在特定条件下,氢原子会发出波长为656.46纳米的红光。这种波长的红光被称为H-α发射或"H-α线"。它对天文学家非常有用,因为它的存在可以作为某些物理过程和条件的指标;例如,它通常是新恒星形成的预兆。因此,经校准允许H-α发射通过的窄带滤光片可用于识别恒星正在形成的空间区域。这幅图像就使用了这种滤光镜,即被称为F657N或H-α滤光镜的窄带滤光镜。F代表滤波器,N代表窄。数值指的是滤光片允许通过的峰值波长(以纳米为单位)。眼尖的朋友可能已经注意到,657非常接近656.46H-α线的波长。使用其他五个滤光片收集的数据也为这幅图像做出了贡献,所有这些滤光片都是宽带滤光片;这意味着它们允许更宽波长范围的光通过。这对于识别极其特殊的光线(如H-α线)作用不大,但仍能让天文学家探索电磁波谱中相对特殊的部分。此外,将多个滤光片的信息汇总在一起,还可以制作出像这样美丽的图像。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1433388.htm手机版:https://m.cnbeta.com.tw/view/1433388.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人