量子计算的重大突破?IBM称攻克了“不可靠”难题

量子计算的重大突破?IBM称攻克了“不可靠”难题需要说明的是,传统计算机的基本二进制单位是0和1,要么是0,要么就是1。但是在量子计算中,它的基本计量单位量子比特既可以是0,也可以是1,还可以既是0也是1,这种现象被称之为量子的叠加态。量子计算机正是通过量子叠加实现同时存储大量信息的功能。因此,它们可以在处理复杂任务时,快速存储大量数据,探索多种可能并选择最有效的解决途径。但是,由于保持量子比特的叠加态是件非常困难的事,最微小的环境变化(振动、电场、磁场、宇宙辐射)也可能导致叠加态的坍缩,造成计算错误。所以,目前世界上还没能造出一台没有误差、且用途广泛的量子计算机。周三,IBM研究人员宣布,他们已经设计出一种方法来管理量子计算的不可靠性,从而得出可靠、有用的答案。IBM科学家已经把研究论文发表在了《自然》杂志上,题为《容错前的量子计算实用性证据》。容错量子计算指的是有量子纠错保护的量子计算。IBM发表的论文2019年,Google的研究人员曾声称他们已经实现了“量子霸权”,也就是量子计算拥有的计算能力超越所有经典计算机。但是,IBM当时就抨击了Google,认为Google夸大了量子计算的性能,误导公众。周三,IBM的研究人员表示,他们已经找到了一些新的、更有用的方法,尽管名字更低调。“我们正在进入一个被我称之为‘实用性’的量子计算阶段,”IBM量子业务副总裁杰伊·甘贝塔(JayGambetta)说,“实用的时代。”耶路撒冷希伯来大学计算机科学教授多里特·阿哈罗诺夫(DoritAharonov)没有参与这项研究,他对此表示:“IBM在这里展示的东西,确实是朝着严肃量子算法设计取得进展的方向,迈出了重要一步,令人惊讶。”如何降低误差?在这项新研究中,IBM的研究人员执行了一项不同的任务,该任务引起了物理学家的兴趣。他们使用一个拥有127个量子比特的量子处理器来模拟127个原子尺度的磁铁棒在磁场中的行为。这些磁铁棒小到足以被量子力学的奇特规则所控制。这是一个简单的系统,被称为伊辛模型(Isingmodel),它经常被用来研究物质的铁磁性。IBM在实验中使用的量子处理器这个问题过于复杂,即使在最大最快的超级计算机上也无法计算出精确的答案。但是在量子计算机上,计算只需不到千分之一秒就能完成。不过,每次量子计算都是不可靠的,因为量子噪声(指任何单色光都存在的涨落)的波动不可避免地会对计算进行干扰并引起误差,但每次计算都很快,因此可以重复执行。实际上,在许多计算中,研究人员故意添加了额外的噪声,使得答案更加不可靠。但通过改变噪声的数量,研究人员可以推断出噪声的具体特征以及它在每个计算步骤中的影响。“我们可以非常精确地放大噪声,然后我们可以重新运行相同的电路,”IBM量子能力和演示经理、《自然》论文的作者之一阿比纳夫·坎达拉(AbhinavKandala)表示,“一旦我们得到了这些不同噪音水平的结果,我们就可以推断出在没有噪声情况下的结果。”从本质上讲,研究人员能够从不可靠的量子计算中去除噪声的影响,这一过程被他们称之为“误差缓解”。“你必须通过发明非常巧妙的方法来减轻噪声的影响,从而绕过噪声,”阿哈罗诺夫博士说道,“这正是他们所做的。”准确性如何?为了得出127个磁铁棒产生的总体磁化强度的答案,IBM的量子计算机总共进行了60万次计算。答案的准确度怎么样?为了寻求帮助,IBM团队找到了加州大学伯克利分校的物理学家。尽管具有127个磁铁棒的伊辛模型太大,有太多可能的配置,无法适用于传统的计算机,但经典计算机算法可以产生近似的答案。这种技术类似于JPEG图像压缩时丢弃不太重要的数据以减小文件大小,同时保留图像的大部分细节。IBM量子计算研究人员加州大学伯克利分校的物理学教授、《自然》杂志论文的作者之一迈克尔·扎勒特尔(MichaelZaletel)说,当他开始与IBM合作时,他认为他的经典计算机算法会比量子算法做得更好。“结果和我预期的有点不同。”扎勒特尔博士说。结果显示,量子计算机可以对伊辛模型的某些配置精确求解。在更简单的例子上,经典算法和量子算法的答案一致。对于更复杂但可解的实例,量子算法和经典算法产生了不同的答案,但量子算法给出的是正确答案。IBM量子实验研究实验室加州大学伯克利分校的研究生萨扬特·阿南德(SajantAnand)在经典近似研究上做了大量工作,他根据上述实验结果认为,对于量子计算和经典计算的结果不一致而且不知道精确解的其他情况,“有理由相信量子计算的结果更精确”。目前还不清楚量子计算是否能够在伊辛模型中无可争议地胜过经典计算。阿南德目前正试图为经典算法增加一个降低误差的版本,它有可能达到或超过量子计算的性能。“没有明显的迹象表明他们在这里实现了量子霸权。”扎勒特尔说。临时解决方案从长远来看,量子科学家预计另外一种不同的方法,即纠错,能够检测和纠正计算错误,这将为量子计算机的许多用途打开大门。目前,纠错方法已经在传统计算机和数据传输中被用于修复错误。但对于量子计算机来说,纠错可能还需要几年的时间,需要更好的处理器来处理更多的量子比特。IBM的科学家们认为,误差缓解是一种临时解决方案,现在可以用于解决伊辛模型之外日益复杂的问题。“这是现有最简单的自然科学问题之一,”甘贝塔博士说,“所以这是一个很好的开始。但现在的问题是,你如何推广它,去解决更有趣的自然科学问题?”这些问题可能包括弄清楚异域材料的性质,加速药物发现和模拟聚变反应。...PC版:https://www.cnbeta.com.tw/articles/soft/1365325.htm手机版:https://m.cnbeta.com.tw/view/1365325.htm

相关推荐

封面图片

量子飞跃:IBM的纠错策略助其超越经典超级计算机

量子飞跃:IBM的纠错策略助其超越经典超级计算机冷却IBMEagle的低温恒温器的内部视图,包含127个量子比特,可以作为科学工具来探索经典方法可能无法解决的新规模问题。资料来源:IBMResearch不过,最近的一项研究表明,即使没有强大的纠错能力,也有办法减少误差,使量子计算机在当今世界发挥重要作用。纽约IBM量子公司的研究人员与加州大学伯克利分校和劳伦斯伯克利国家实验室的合作者在《自然》杂志上报告说,他们将一台127量子比特的量子计算机与一台最先进的超级计算机进行了比较。至少在一项特定的计算中,量子计算机的性能超过了超级计算机。研究人员之所以选择这项计算,并不是因为它对经典计算机特别具有挑战性,而是因为它类似于物理学家经常进行的计算。重要的是,计算的复杂程度可以提高,以测试目前噪声大、易出错的量子计算机能否为特定类型的普通计算提供精确结果。量子计算机在计算变得越来越复杂的过程中产生了可验证的正确解,而超级计算机算法却产生了错误答案,这一事实给人们带来了希望,即采用减少错误的量子计算算法,而不是更困难的纠错算法,可以解决尖端物理问题,如了解超导体和新型电子材料的量子特性。加州大学伯克利分校研究生、该研究合著者萨简特-阿南德(SajantAnand)说:"我们正在进入这样一个阶段:量子计算机可能能够完成目前经典计算机算法无法完成的事情。"IBM量子公司量子理论与能力高级经理萨拉-谢尔顿(SarahSheldon)补充说:"我们可以开始将量子计算机视为研究问题的工具,否则我们就无法研究这些问题。"反过来说,量子计算机对经典计算机的胜利可能会激发新的想法,以增强目前经典计算机上使用的量子算法,加州大学伯克利分校物理学副教授、托马斯和艾莉森-施耐德物理学讲座教授迈克尔-扎莱特尔(MichaelZaletel)说:"在研究过程中,我非常确信经典方法会比量子方法做得更好。因此,当IBM的零噪声外推版本比经典方法做得更好时,我百感交集。但是,思考量子系统是如何工作的,实际上可能会帮助我们找出处理问题的正确经典方法。虽然量子计算机做到了标准经典算法所做不到的事情,但我们认为这对改进经典算法是一个启发,以便将来经典计算机能像量子计算机一样运行良好。"增强噪声以抑制噪声IBM量子计算机看似优势的关键之一是量子错误缓解,这是一种处理量子计算噪音的新技术。自相矛盾的是,IBM的研究人员可控地增加量子电路中的噪声,从而得到噪声更大、更不准确的答案,然后向后推断计算机在没有噪声的情况下会得到的答案。这依赖于对影响量子电路的噪声的充分了解,以及对噪声如何影响输出的预测。之所以会出现噪声问题,是因为IBM的量子比特是敏感的超导电路,代表二进制计算中的0和1。当量子比特纠缠在一起进行计算时,热量和振动等不可避免的干扰会改变纠缠,从而带来误差。纠缠程度越高,噪声的影响就越大。此外,作用于一组量子比特的计算会在其他未参与计算的量子比特中引入随机误差。额外的计算会加剧这些错误。科学家们希望利用额外的量子比特来监测这些错误,以便对其进行纠正,这就是所谓的容错纠错。但是,实现可扩展的容错是一项巨大的工程挑战,对于数量越来越多的量子比特来说,容错是否可行还有待验证,Zaletel说。取而代之的是,IBM工程师提出了一种被称为零噪声外推法(ZNE)的误差缓解策略,即利用概率方法可控地增加量子设备上的噪声。根据一名前实习生的建议,IBM研究人员找到了阿南德、博士后研究员吴艳涛和Zaletel,请他们帮助评估使用这种误差缓解策略所获得结果的准确性。Zaletel开发了超级计算机算法来解决涉及量子系统的困难计算,例如新材料中的电子相互作用。这些算法采用张量网络模拟,可直接用于模拟量子计算机中相互作用的量子比特。Cori于2017年推出,是CrayXC40系列中的一个型号,拥有约30petaflops的惊人峰值性能,稳居当时全球超级计算机的第五位。它配备了2388个英特尔至强"Haswell"处理器节点、9,688个英特尔至强Phi"Knight'sLanding"节点和1.8PB的CrayDataWarpBurstBuffer固态设备,它的名字是为了纪念著名的生物化学家GertyCori。值得一提的是,GertyCori是第一位获得诺贝尔科学奖的美国女性,也是诺贝尔生理学或医学奖的首位女性获得者。Cori超级计算机于2023年5月31日退役。资料来源:伯克利实验室量子与经典:实验在几周的时间里,IBMQuantum的YoungseokKim和AndrewEddins在先进的IBMQuantumEagle处理器上运行了越来越复杂的量子计算,然后Anand在伯克利实验室的Cori超级计算机和Lawrencium集群以及普渡大学的Anvil超级计算机上使用最先进的经典方法尝试了同样的计算。当量子鹰于2021年推出时,它拥有所有量子计算机中数量最多的高质量量子比特,似乎超出了经典计算机的模拟能力。事实上,在经典计算机上精确模拟所有127个纠缠的量子比特需要天文数字的内存。量子态需要用127个独立数字的2的幂来表示。也就是1后面跟38个零;一般计算机可以存储约1000亿个数字,少了27个数量级。为了简化问题,阿南德、吴和扎莱特尔使用了近似技术,使他们能够在经典计算机上以合理的时间和成本解决这个问题。这些方法有点像jpeg图像压缩,即在可用内存的限制下,去掉不那么重要的信息,只保留获得准确答案所需的信息。Anvil超级计算机是一台功能强大的超级计算机,可提供先进的计算能力,支持各种计算和数据密集型研究。资料来源:普渡大学阿南德证实了量子计算机在不太复杂的计算中结果的准确性,但随着计算深度的增加,量子计算机的结果与经典计算机的结果出现了偏差。对于某些特定参数,阿南德能够简化问题并计算出精确解,从而验证量子计算结果优于经典计算机计算结果。在所考虑的最大深度上,虽然没有精确的解,但量子和经典结果却不一致。研究人员提醒说,虽然他们无法证明量子计算机对最难计算的最终答案是正确的,但"老鹰"在前几次运行中取得的成功让他们确信这些答案是正确的。"量子计算机的成功并非偶然。它实际上适用于整个电路家族,"扎莱特尔说。友好竞争与未来展望虽然扎莱特尔对预测这种减少错误的技术是否适用于更多的量子比特或更深入的计算持谨慎态度,但他说,这些结果还是鼓舞人心的。他说:"这激发了一种友好竞争的感觉,我认为我们应该能够在经典计算机上模拟他们正在做的事情。但我们需要用一种更聪明、更好的方式来思考这个问题--量子设备正处于一个表明我们需要不同方法的阶段。"一种方法是模拟IBM开发的ZNE技术。阿南德说:"现在,我们要问的是,我们能否将同样的误差缓解概念应用到经典张量网络模拟中,看看能否获得更好的经典结果。这项工作让我们有能力使用量子计算机作为经典计算机的验证工具,这颠覆了通常的做法。"...PC版:https://www.cnbeta.com.tw/articles/soft/1377527.htm手机版:https://m.cnbeta.com.tw/view/1377527.htm

封面图片

十年内量子超算或将出炉 可靠量子计算机研发获重大突破

十年内量子超算或将出炉可靠量子计算机研发获重大突破图片来源:《物理评论B》量子超级计算机不但要能解决经典计算机无法解决的问题,还要能够扩展以解决当今世界面临的最复杂问题,它必须兼具高性能以及可靠性。研究团队此次设计出了一种新方法来表示具有硬件稳定性的逻辑量子比特。据报道,该装置可诱导以马约拉纳零模态为特征的物质相——费米子的类型。研究团队还报告说,这些设备已显示出足够低的无序性,可通过拓扑间隙协议,证明该技术是可行的。微软在其公告中表示,他们已经创建了一项新的指标来衡量量子超级计算机的性能——每秒可靠量子操作数(rQOPS)。该数字描述了计算机在一秒钟内可执行多少可靠操作,它考虑的是整个系统的性能,而不仅仅是量子比特的性能,因此可确保算法的正确运行。研究显示,第一台量子超级计算机至少需要100万rQOPS,并将扩展到超过10亿,以解决有影响力的化学和材料科学问题。微软负责先进量子技术开发的副总裁克里斯塔·斯沃尔则表示,10年内就能达到公司量子计算路线图的最后部分,也就是制造出量子超级计算机。...PC版:https://www.cnbeta.com.tw/articles/soft/1367333.htm手机版:https://m.cnbeta.com.tw/view/1367333.htm

封面图片

IBM计算机“基准”实验显示量子计算机将在两年内超越传统计算机

IBM计算机“基准”实验显示量子计算机将在两年内超越传统计算机这项新研究的成果发表在上周的《自然》杂志上。科学家们使用IBM量子计算机Eagle来模拟真实材料的磁性,处理速度比传统计算机更快。IBM量子计算机之所以能超越传统计算机,是因为其使用了一种特殊的误差缓解过程来补偿噪声带来的影响。而噪声正是量子计算机的一个基本弱点。基于硅芯片的传统计算机依赖于“比特(bit)”进行运算,但其只能取0或1这两个值。相比之下,量子计算机使用的量子比特可以同时呈现多种状态。量子比特依赖于量子叠加和量子纠缠等量子现象。理论上这使得量子比特的计算速度更快,而且可以真正实现并行计算。相比之下,传统计算机基于比特的计算速度很慢,而且需要按顺序依次进行。但从历史上看,量子计算机有一个致命的弱点:量子比特的量子态非常脆弱,来自外部环境的微小破坏也会永远扰乱它们的状态,从而干扰所携带的信息。这使得量子计算机非常容易出错或“出现噪声”。在这一新的原理验证实验中,127量子比特的Eagle超级计算机用建立在超导电路上的量子比特计算了二维固体的完整磁性状态。然后,研究人员仔细测量每个量子比特所产生的噪声。事实证明,诸如超级计算材料中的缺陷等因素可以可靠预测每个量子比特所产生的噪声。据报道,研究小组随后利用这些预测值来模拟生成没有噪音的结果。量子霸权的说法之前就出现过。2019年,谷歌的科学家们声称,公司开发的量子计算机Sycamore在200秒内解决了一个普通计算机需要1万年才能破解的问题。但谷歌量子计算机所解决的问题本质上就是生成一长串随机数,然后检查它们的准确性,并没有什么实际用途。相比之下,用IBM量子计算机完成的新实验是一个高度简化但有真实应用价值的物理问题。2019年谷歌量子霸权研究成果参与者之一、加州大学圣巴巴拉分校物理学家约翰·马丁尼斯(JohnMartinis)表示,“这能让人们乐观认为,它将在其他系统和更复杂的算法中发挥作用。”(辰辰)...PC版:https://www.cnbeta.com.tw/articles/soft/1366285.htm手机版:https://m.cnbeta.com.tw/view/1366285.htm

封面图片

谷歌科学家发布:量子计算机取得重大突破

谷歌科学家发布:量子计算机取得重大突破谷歌科学家最近在ArXiv平台上发布了一篇预印本论文,声称在量子计算机领域取得了重大突破。他们表示,通过对Sycamore处理器的升级,谷歌成功提升了量子位的数量,从之前的53个增加到了70个。这次实验中,谷歌科学家们执行了一项名为随机电路采样的任务,这个任务在量子计算中用于评估计算机的性能和效率。通过运行随机电路并分析结果输出,科学家们测试了量子计算机在解决复杂问题方面的能力。谷歌的研究结果显示,升级后的70个量子位的Sycamore处理器在执行随机电路采样任务上比业内最先进的超级计算机快了几十亿倍。例如,需要业内最先进超级计算机Frontier计算47.2年才能完成的任务,53个量子位的Sycamore处理器只需要6.18秒就能完成,而新版的70个量子位的Sycamore处理器速度更快。来源,,来自:雷锋频道:@kejiqu群组:@kejiquchat投稿:@kejiqubot

封面图片

IBM和日本研究所开发下一代量子计算机 拥有10000个量子比特

IBM和日本研究所开发下一代量子计算机拥有10000个量子比特量子计算机以解决传统计算机无法解决的复杂问题而闻名。它们有望帮助发现新药,通过更高效的分销路线改善物流,以及许多其他应用。该研究所和IBM预计将在未来几天签署谅解备忘录并宣布这笔交易。据该研究所称,这将是IBM首次与外国研究机构在如此大规模的量子计算领域展开合作。正在开发的量子计算机预计将于2029年投入使用。该计算机拥有超过10000个量子比特,有望无误地计算高级组合。合作伙伴还将开发下一代量子计算机所需的半导体和超导集成电路。量子计算机在接近绝对零度的极低温度下运行,因此需要能够承受极端温度的半导体和电路。该研究所隶属于日本经济产业省,以其在人工智能(AI)相关技术方面的实力而闻名,并拥有与IBM合作项目所需的专利。它还希望引入日本零部件制造商,实现量产。IBM预计将在2025年开始销售拥有1000量子比特的量子计算机。该研究所和IBM将说服日本公司使用它们。该研究所将通过培训日本公司使用量子计算机做出贡献,例如制药商。量子计算机仍处于发展阶段。现有的133量子比特的量子计算机仍然会出错,在研究中使用时通常需要超级计算机的帮助。预计10000量子比特的版本无需超级计算机的帮助即可使用。科学家表示,要使量子计算机投入商业使用,硬件需要达到20000到30000个量子比特的水平。...PC版:https://www.cnbeta.com.tw/articles/soft/1434996.htm手机版:https://m.cnbeta.com.tw/view/1434996.htm

封面图片

量子计算机在适当的错误控制下更擅长猜测

量子计算机在适当的错误控制下更擅长猜测科学家们通过有效抑制位串猜谜游戏中的错误,管理长达26位的字符串,实现了量子加速。他们表明,通过适当的错误控制,即使在当前嘈杂的量子计算时代,量子计算机也能以比传统计算机更好的时间尺度执行完整算法。通过有效地减少在这个级别经常遇到的错误,他们成功地管理了长达26位的位串,比以前可能的要大得多。(对于上下文,一位指的是二进制数,可以是零或一)。量子计算机有望解决某些问题,其优势会随着问题复杂性的增加而增加。但是,它们也极易出错或产生噪音。Lidar表示,挑战在于“在当今量子计算机仍然‘嘈杂’的现实世界中获得优势。”当前量子计算的这种容易产生噪声的条件被称为“NISQ”(噪声中级量子)时代,该术语改编自用于描述经典计算设备的RISC架构。因此,任何现有的量子速度优势证明都需要降噪。一个问题的未知变量越多,计算机通常就越难解决。学者们可以通过玩一种游戏来评估计算机的性能,以了解算法猜测隐藏信息的速度有多快。例如,想象一下电视游戏Jeopardy的一个版本,参赛者轮流猜测一个已知长度的秘密单词,一次一个完整的单词。在随机更改秘密单词之前,主持人只为每个猜出的单词显示一个正确的字母。在他们的研究中,研究人员用位串替换了单词。一台经典计算机平均需要大约3300万次猜测才能正确识别26位字符串。相比之下,一台功能完美的量子计算机,在量子叠加中提出猜测,只需一次猜测就可以确定正确答案。这种效率来自运行25多年前由计算机科学家EthanBernstein和UmeshVazirani开发的量子算法。然而,噪声会显着阻碍这种指数量子优势。激光雷达和Pokharel通过采用称为动态去耦的噪声抑制技术实现了量子加速。他们花了一年的时间进行实验,Pokharel在USC的激光雷达下担任博士生。最初,应用动态解耦似乎会降低性能。然而,经过多次改进后,量子算法按预期运行。解决问题的时间比任何经典计算机都慢,随着问题变得越来越复杂,量子优势变得越来越明显。激光雷达指出,“目前,经典计算机仍然可以绝对地更快地解决问题。”换句话说,报告的优势是根据找到解决方案所需的时间尺度而不是绝对时间来衡量的。这意味着对于足够长的位串,量子解决方案最终会更快。该研究最终表明,通过适当的错误控制,即使在NISQ时代,量子计算机也可以执行完整的算法,并且比传统计算机更能缩短寻找解决方案所需的时间。...PC版:https://www.cnbeta.com.tw/articles/soft/1364371.htm手机版:https://m.cnbeta.com.tw/view/1364371.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人