生物相容性创新:MIT研发用于下一代植入物的柔软、可打印的无金属电极

生物相容性创新:MIT研发用于下一代植入物的柔软、可打印的无金属电极麻省理工学院的工程师们开发了一种不含金属、类似果冻的材料,它像生物组织一样柔软和坚韧,并能与传统金属类似地导电。这种新材料是一种高性能导电聚合物水凝胶,有朝一日可能会取代医疗设备电极中的金属。植入式电极主要由刚性金属制成,其本质是导电的。但随着时间的推移,金属会加重组织的负担,造成疤痕和炎症,反过来又会降低植入物的性能。现在,麻省理工学院的工程师们已经开发出一种不含金属、类似果冻的材料,它和生物组织一样柔软坚韧,并且可以和传统金属一样导电。这种材料可以被制成可打印的墨水,研究人员将其图案化为灵活的橡胶状电极。这种新材料是一种高性能导电聚合物水凝胶,有朝一日可能会取代金属,成为功能性的凝胶型电极,具有生物组织的外观和感觉。"这种材料的操作与金属电极相同,但由凝胶制成,与我们的身体相似,并具有类似的水含量,"医疗设备创业公司SanaHeal的联合创始人HyunwooYukSM'16PhD'21说。"它就像一个人造组织或神经。"麻省理工学院机械工程和土木与环境工程教授赵煊赫补充说:"我们相信,我们第一次有了一种坚韧、牢固、类似果冻的电极,有可能取代金属来刺激神经,并与心脏、大脑和身体的其他器官对接。"赵、Yuk以及麻省理工学院和其他地方的其他人在《自然-材料》上报告了他们的结果。该研究的共同作者包括第一作者和麻省理工学院的前博士后周涛,他现在是宾夕法尼亚州立大学的助理教授,以及江西科技师范大学和上海交通大学的同事。一个真正的挑战绝大多数聚合物在本质上是绝缘的,这意味着电力不容易通过它们。但是,存在着一小部分特殊的聚合物,它们实际上可以通过其主体传递电子。一些导电聚合物在20世纪70年代首次被证明具有高导电性--这项工作后来被授予诺贝尔化学奖。最近,包括Zhao实验室的研究人员已经尝试使用导电聚合物来制造柔软的无金属电极,用于生物电子植入物和其他医疗设备。这些努力旨在制造柔软而坚韧的导电薄膜和贴片,主要是通过将导电聚合物的颗粒与水凝胶(一种柔软和海绵状的富水聚合物)混合。研究人员希望导电聚合物和水凝胶的结合将产生一种灵活的、生物相容的和导电的凝胶。但是到目前为止,制成的材料要么太弱太脆,要么表现出糟糕的电性能。Yuk说:"在凝胶材料中,电气和机械性能总是相互对抗。"如果你改善凝胶的电性能,你必须牺牲机械性能,反之亦然。但在现实中,我们两者都需要:一种材料应该是导电的,同时也是有弹性和坚固的。这是真正的挑战,也是人们无法将导电聚合物制成完全由凝胶制成的可靠设备的原因。"在他们的新研究中,Yuk和他的同事们发现他们需要一种新的配方,将导电聚合物与水凝胶混合,以增强各自成分的电气和机械性能。Yuk说:"人们以前依赖于这两种材料的均匀、随机混合。这种混合物产生了由随机分散的聚合物颗粒组成的凝胶。该小组意识到,为了分别保持导电聚合物和水凝胶的电气和机械强度,两种成分应以它们略微排斥的方式混合,这种状态被称为相分离。在这种略微分离的状态下,每种成分就可以将其各自的聚合物连接起来,形成长长的微观链,同时也作为一个整体进行混合。""想象一下,我们正在制作电气和机械意大利面条,"赵提出。"电学意大利面条是导电聚合物,它现在可以在材料上传输电力,因为它是连续的。而机械意大利面条是水凝胶,它可以传递机械力,并具有韧性和伸展性,因为它也是连续的。"研究人员随后调整了配方,将意大利面条的凝胶煮成墨水,他们将其送入3D打印机,并打印在纯水凝胶的薄膜上,图案类似于传统的金属电极。第一作者Zhou说:"因为这种凝胶是可3D打印的,我们可以定制几何和形状,这使得它很容易为各种器官制造电接口。"研究人员随后将打印好的类似果冻的电极植入了大鼠的心脏、坐骨神经和脊髓。研究小组在动物身上测试了电极的电气和机械性能长达两个月,发现这些装置在整个过程中保持稳定,周围组织几乎没有炎症或疤痕。电极还能够将来自心脏的电脉冲传递给外部显示器,并向坐骨神经和脊髓提供小脉冲,这反过来又刺激了相关肌肉和肢体的运动活动。展望未来,Yuk设想,这种新材料的直接应用可能是用于从心脏手术中恢复的人。"这些病人需要几周的电力支持,以避免心脏病发作,这是手术的一个副作用,"Yuk说。"因此,医生在心脏表面缝合一个金属电极,并在数周内刺激它。我们可能会用我们的凝胶取代那些金属电极,以最大限度地减少并发症和副作用,目前人们只是接受。"该团队正在努力延长该材料的使用寿命和性能。然后,这种凝胶可以作为器官和长期植入物之间的软电接口,包括心脏起搏器和深脑刺激器。赵说:"我们小组的目标是用类似Jell-O的东西来取代体内的玻璃、陶瓷和金属,这样它就更加良性,但性能更好,而且可以持续很长时间。这是我们的希望。"...PC版:https://www.cnbeta.com.tw/articles/soft/1365521.htm手机版:https://m.cnbeta.com.tw/view/1365521.htm

相关推荐

封面图片

研究:方糖可被用来制造性能更好的医疗电极

研究:方糖可被用来制造性能更好的医疗电极虽然医疗电极对监测身体内的电活动至关重要,但它们通常是僵硬的、昂贵的,而且当佩戴者移动时它们不能很好地保持。然而,一种新的方糖衍生的电极解决了这些缺点。目前,性能最好的电极包括一个与皮肤接触的导电银盘。由于该圆盘不是非常柔软或有弹性,它不能很好地适应皮肤的轮廓--这意味着它佩戴起来可能不舒服,而且如果病人不保持相对静止,它很可能会脱落。此外,涂在它和皮肤之间的导电凝胶很快就会变干,如果不经常重新涂抹,就会导致信号丢失。在副教授王川的领导下,圣路易斯华盛顿大学的一个团队着手开发一种成本更低、更舒适、粘附性更好的替代品,其性能至少与现有电极一样好。为了做到这一点,他们把目光投向了普通的商店购买的方糖。每个方糖最初被塑造成所需电极的形状,然后被浸入一种被称为聚二甲基硅氧烷(PDMS)的液体聚合物中两小时。该液体被重新塑造的立方体吸收,进入糖粒之间的微小空间。一旦一个三小时的热炉固化过程将液体聚合物转化为有弹性的固体,热水被用来溶解糖,只留下一个海绵状的多孔PDMS矩阵。在用氧等离子体和乙二醇处理后,该海绵被浸入另一种聚合物--一种导电的聚合物--形成一层薄膜,覆盖在微小的孔隙上。在烤箱中再进行一次处理后,导电海绵就被接上了线,可以作为电极使用。在对人类患者进行的测试中,发现该设备比传统的刚性金属电极更符合和粘附在皮肤上。更重要的是,其许多微孔的表面积增加,使得电信号更强,噪音更小。作为一个额外的好处,由于海绵可以容纳大量的导电凝胶,凝胶不会像传统电极下面的薄层那样迅速干涸。此外,海绵较厚的凝胶层还被发现有点像减震器,允许电极在佩戴者移动时与皮肤保持电接触。人们希望,一旦进一步发展,海绵电极可以用于需要病人进行身体活动的医疗检查,此外,它们甚至可以由病人在自己家里长期佩戴。关于这项研究的论文最近发表在《ACSNano》杂志上。PC版:https://www.cnbeta.com/articles/soft/1302231.htm手机版:https://m.cnbeta.com/view/1302231.htm

封面图片

科学家创造出的新材料兼具玻璃聚合物的硬度和凝胶的拉伸性

科学家创造出的新材料兼具玻璃聚合物的硬度和凝胶的拉伸性研究人员创造了一种名为"玻璃凝胶"的新型材料,这种材料与玻璃聚合物一样坚硬,但如果施加足够的力,它可以拉伸到原长度的五倍,而不会断裂。玻璃态凝胶的一个关键特点是,它们的液体含量超过50%,这使得它们比具有类似物理特性的普通塑料更能有效导电。资料来源:北卡罗来纳州立大学王美香科学家们发明了一种名为"玻璃凝胶"的新型材料,这种材料尽管含有50%以上的液体,但却非常坚硬且不易破裂。加上玻璃凝胶易于生产,这种材料有望应用于多种领域。凝胶体和玻璃态聚合物是历来被视为截然不同的两类材料。玻璃态聚合物质地坚硬,通常比较脆。它们用于制造水瓶或飞机窗户等物品。凝胶(如隐形眼镜)含有液体,柔软而有弹性。"我们创造了一类被称为玻璃凝胶的材料,这种材料和玻璃聚合物一样坚硬,但如果施加足够的力,它可以拉伸到原来长度的五倍,而不会断裂,"这项研究论文的通讯作者、北卡罗来纳州立大学化学和生物分子工程系卡米尔和亨利-德雷福斯教授迈克尔-迪基(MichaelDickey)说。"更重要的是,一旦材料被拉伸,你就可以通过加热使其恢复原状。此外,玻璃凝胶的表面具有很强的粘性,这在硬质材料中并不多见。"该论文的共同第一作者、北卡罗来纳州立大学博士后研究员王美香说:"玻璃凝胶的一个关键特点是,它们的液体含量超过50%,这使得它们比物理特性相当的普通塑料更能高效导电。考虑到这些材料所具有的许多独特性质,我们对它们的用途感到乐观。"玻璃态凝胶,顾名思义,实际上是一种结合了玻璃态聚合物和凝胶最诱人特性的材料。为了制造玻璃态凝胶,研究人员首先将玻璃态聚合物的液态前体与离子液体混合。将这种混合液体倒入模具中,暴露在紫外线下,使材料"固化"。然后移除模具,留下玻璃状凝胶。"离子液体是一种溶剂,就像水一样,但完全由离子组成,"Dickey说。"通常在聚合物中添加溶剂时,溶剂会推开聚合物链,使聚合物变得柔软、可伸展。这就是为什么湿隐形眼镜柔软,而干隐形眼镜不柔软的原因。在玻璃态凝胶中,溶剂会将聚合物分子链推开,使其像凝胶一样具有拉伸性。然而,溶剂中的离子会强烈吸引聚合物,从而阻止聚合物链移动。链条无法移动就使其成为玻璃状。最终的结果是,由于吸引力的作用,材料变得坚硬,但由于额外的间距,材料仍然能够拉伸。"研究人员发现,玻璃凝胶可以用各种不同的聚合物和离子液体制成,但并非所有类别的聚合物都能用于制造玻璃凝胶。Dickey说:"带电或极性的聚合物有望用于玻璃凝胶,因为它们会被离子液体吸引。也许玻璃凝胶最吸引人的特点就是它们的粘性,因为虽然我们知道是什么让它们变得坚硬和可拉伸,但我们只能猜测是什么让它们如此具有粘性。"在测试中,研究人员发现,玻璃状凝胶即使含有50-60%的液体,也不会蒸发或变干。他们还认为,玻璃凝胶易于制造,因此有望得到实际应用。Dickey说:"制造玻璃态凝胶是一个简单的过程,可以通过在任何类型的模具中固化或3D打印来实现。大多数具有类似机械性能的塑料都要求制造商将聚合物作为原料进行生产,然后将聚合物运输到另一个工厂,在那里聚合物被熔化并形成最终产品。我们很高兴看到如何使用玻璃凝胶,并愿意与合作者一起确定这些材料的应用"。这篇题为"由溶剂增韧的玻璃凝胶"的论文于6月19日发表在《自然》杂志上。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1435551.htm手机版:https://m.cnbeta.com.tw/view/1435551.htm

封面图片

金属/聚合物复合材料使3D打印的纳米结构更加坚固

金属/聚合物复合材料使3D打印的纳米结构更加坚固在一个称为双光子光刻的现有工艺中,激光被照射到液体树脂混合物中。只要该光束的最中心照射到其中一个纳米团块,就会发生化学反应,导致树脂在该特定区域变硬。因此,通过在树脂中精确地移动激光束,有可能建立起非常小而复杂的物体。当用这种特殊材料打印的晶格被测试时,发现它们能够吸收的能量是用其他常用材料打印的晶格的两倍。根据新复合材料制成的格子的类型,一些格子擅长承受重物而不变形,而另一些格子则擅长压扁变形吸收冲击力,然后弹回其原始的无损状态。在打印晶格时,金属纳米簇允许化学反应的发生比在其他利用不同类型的光敏分子的材料中要快得多。即使在复合材料中使用了一些不同的聚合物,也不难注意到这种效果--在一种情况下,当使用一种基于蛋白质的聚合物时,物品的打印速度比以前使用这种聚合物时快100倍。关于这项研究的一篇论文的通讯作者WendyGu助教说:"现在人们对设计不同类型的3D结构以获得机械性能很感兴趣。我们在此基础上所做的是开发出一种真正善于抵抗力的材料,因此它不仅仅是三维结构,而且是提供非常好的保护的材料。"这篇论文最近发表在《科学》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1336975.htm手机版:https://m.cnbeta.com.tw/view/1336975.htm

封面图片

新型液态金属技术可使人体内的医疗植入物被溶解而非移除

新型液态金属技术可使人体内的医疗植入物被溶解而非移除在乔瓦尼-特拉弗罗助理教授和博士后研究员维维安-费格的领导下,麻省理工学院的一个团队借鉴了一种被称为液态金属脆化的过程。在这种现象中,坚硬的金属如锌或不锈钢与某些类型的液态金属接触后会解体。这发生在液态金属穿透固体金属的晶界时,晶界是它所组成的微小晶体之间的边界。最初,科学家们正在研究如何利用这一过程,以分解植入胃肠道的设备。他们知道一种叫做镓的软金属对硬铝有很好的作用,因此他们用一种镓合金--共晶镓铟(EGaIn)--和一个部分铝制的药物输送装置进行了实验。研究中使用的原型给药装置Y形的原型装置由充满药物的聚合物臂组成,通过铝连接管连接到一个聚合物枢纽。研究人员的想法是,一旦它被插入病人的消化道,它将无害地停留在原地并逐渐释放其药物载荷,直到它解体并随粪便排出。在动物研究中,当该装置被放置在胃肠道中后,口服含有EGaIn的溶液。当液体经过该装置时,它导致铝接头分解,使该装置崩解并被排出。重要的是,啮齿类动物的研究表明,EGaIn是无毒的,并且具有生物相容性,尽管还需要进一步研究它对人类的影响。在药物输送装置取得成功后,科学家们还能够分解植入食道组织的铝制支架。在消化道之外,他们还尝试在用于固定伤口的铝制手术钉上涂抹EGaIn,因为用传统方法去除普通手术钉,有时实际上会损害已经愈合的组织。结果发现,液态金属使铝质手术钉在几分钟内就解体了。此外,如果在现实世界中使用这些订书针,由此产生的铝碎片不会对身体造成损伤。"对于未来的手术钉,我们的设计是这样的:组织被固定在一起,因为有一座桥支撑着两个对立的腿;如果桥被溶解,钉书针的腿可以很容易地被移除,"Feig告诉我们。"另外,如果有碎片留在组织内,我们观察到它们也可以很容易地被排出。"这项研究在最近发表于《先进材料》杂志的一篇论文中进行了描述。...PC版:https://www.cnbeta.com.tw/articles/soft/1332473.htm手机版:https://m.cnbeta.com.tw/view/1332473.htm

封面图片

诺贝尔获奖化学成果催生下一代储能设备

诺贝尔获奖化学成果催生下一代储能设备该装置由通过新一代化学反应合成的材料组成,三位科学家因此获得了2022年诺贝尔化学奖。聚合物薄膜电容器是一种电气元件,利用薄塑料层作为绝缘层,在电场中存储和释放能量。聚合物薄膜电容器约占全球高压电容器市场的50%,具有重量轻、成本低、机械灵活性强、可循环使用等优点。但是,最先进的聚合物薄膜电容器的性能会随着温度和电压的升高而急剧下降。开发耐热性和耐电场性更强的新材料至关重要;而创造化学性近乎完美的聚合物则提供了实现这一目标的途径。"我们的研究为电稳健聚合物增添了一个新类别。它为探索更坚固、更高性能的材料开辟了许多可能性,"伯克利实验室化学家、报告这项工作的焦耳研究的资深作者YiLiu说。Liu是伯克利实验室能源部科学办公室用户设施分子铸造厂的有机和大分子合成设施主任。除了在高温下保持稳定之外,电容器还需要是一种强"介电"材料,这意味着它在承受高电压时仍是一种强绝缘体。然而,目前已知的材料系统很少能同时提供热稳定性和介电强度。造成这种稀缺性的原因是缺乏可靠、方便的合成方法,以及对聚合物结构与性能之间关系缺乏基本了解。刘说:"提高现有薄膜的热稳定性,同时保持其电绝缘强度,是一项持续的材料挑战。"分子铸造厂的研究人员与斯克里普斯研究所的研究人员长期合作,现已解决了这一难题。他们利用2014年开发的一种简单快速的化学反应,将含氟硫键化合物中的氟原子置换出来,生成了名为聚硫酸盐的硫酸盐分子长聚合物链。多硫酸盐具有优异的热性能,可浇铸成柔韧的独立薄膜。以这种薄膜为基础的高温高压电容器在150摄氏度的高温下显示出最先进的储能特性。这种电力电容器有望提高电气化交通等高要求应用中集成电力系统的能效和可靠性。资料来源:YiLiu和He(Henry)Li/伯克利实验室这种氟化硫交换(SuFEx)反应是由斯克里普斯研究所化学家、两届诺贝尔化学奖得主巴里-夏普莱斯(K.BarrySharpless)与同为斯克里普斯研究所化学家的吴鹏(PengWu)共同开创的点击化学反应的下一代版本。这种近乎完美而又易于操作的反应通过不同反应基团之间形成的强化学键将独立的分子实体连接起来。Liu的团队最初使用各种热分析工具来研究这些新材料的基本热性能和机械性能。作为伯克利实验室合成和鉴定可用于储能的新型材料计划的一部分,Liu和他的同事们现在发现,令人惊讶的是,聚硫酸盐具有出色的介电性能,尤其是在高电场和高温度下。"有几种商用和实验室生成的聚合物因其介电性能而闻名,但聚硫酸盐从未被考虑过。分子铸造厂和伯克利实验室材料科学部的博士后研究员、本研究的第一作者HeLi说:"多硫酸盐与介电质的结合是本研究的新颖之处之一。Liu受到多硫酸盐优异的基线介电性能的启发,研究人员在这种材料的薄膜上沉积了极薄的氧化铝(Al2O3)层,从而设计出了具有更强储能性能的电容器设备。他们发现,制造出的电容器具有出色的机械柔韧性,能承受每米超过7.5亿伏特的电场,并能在高达150摄氏度的温度下高效工作。相比之下,目前的基准商用聚合物电容器只能在低于120摄氏度的温度下稳定工作。超过这个温度,它们只能承受每米小于5亿伏特的电场,能效严重下降一半以上。这项工作为探索坚固耐用的高性能储能材料提供了新的可能性。吴说:"我们深入了解了这种材料具有卓越性能的内在机理。"这种聚合物兼顾了电学、热学和机械性能,这很可能得益于点击化学反应中引入的硫酸盐连接。由于模块化化学反应具有非凡的结构多样性和可扩展性,因此同样的途径可以提供一条通往性能更高的新型聚合物的可行之路,从而满足更苛刻的操作条件。这些聚硫酸盐是成为最先进的新型聚合物电介质的有力竞争者。一旦科学家们克服了薄膜材料大规模制造工艺的障碍,这些设备就能极大地提高电动汽车集成动力系统的能效,并增强其运行可靠性。夏普勒斯说:"谁能想到,一层微弱的硫酸盐聚合物薄膜能抵御闪电和火焰这两种宇宙中最具破坏力的力量呢?""我们正在不断突破热性能和电性能的极限,加速从实验室到市场的转变,"Liu补充道。...PC版:https://www.cnbeta.com.tw/articles/soft/1378789.htm手机版:https://m.cnbeta.com.tw/view/1378789.htm

封面图片

新研发的双面智能纺织纤维兼具导电性和柔韧性

新研发的双面智能纺织纤维兼具导电性和柔韧性这种单股纤维兼具棉花的柔韧性和一种名为聚苯胺的聚合物的导电性。在可穿戴电子纺织品方面显示出良好的潜力。华盛顿州立大学的研究人员在《碳水化合物聚合物》(CarbohydratePolymers)杂志上详细介绍了他们的研究成果。一面是棉花,另一面是导电聚合物图/华盛顿州立大学聚苯胺与棉纤维素结合在一起后会太脆,无法单独形成可用的纤维。也就是说,这两种材料并不是简单地混合成一种同质混合物。如果是这样,聚苯胺就会被稀释到失去导电性的程度。为了解决这个问题,西悉尼大学的研究人员将从回收的T恤衫中提取的棉纤维素溶解到一种溶液中,并将导电聚合物溶解到另一种单独的溶液中。然后将这两种溶液并排合并在一起,挤出材料制成一根纤维。在这项研究中,WSU团队努力克服将导电聚合物与棉纤维素混合的难题。聚合物是一种具有重复模式的大分子物质。在这种情况下,研究人员使用了聚苯胺(又称PANI),这是一种具有导电性能的合成聚合物,已被用于印刷电路板制造等应用中。结果显示界面结合良好,这意味着不同材料的分子在拉伸和弯曲过程中都能保持在一起。首席科学家刘航正在处理一卷材图/料华盛顿州立大学的DeanHare"我们将一种纤维分为两部分:一部分是传统的棉花:柔韧性和强度足以满足日常使用,而另一面则是导电材料,"该研究的通讯作者、西悉尼大学纺织品研究员刘航说。"棉花可以支撑导电材料,而导电材料可以提供所需的功能。"虽然还需要更多的开发工作,研究人员的想法是将这样的纤维集成到服装中,作为带有柔性电路的传感器贴片。这些补丁可以成为消防员、士兵或处理化学品的工人制服的一部分,以检测是否接触到危险物质。其他应用还包括健康监测或运动衬衫,它们比目前的健身监测器能做得更多。刘航副教授领导的研究论文最近发表在《碳水化合物聚合物》杂志上。这项研究的其他作者包括第一作者刘旺成、赵子辉、梁丹、钟伟红和张金文。这项研究得到了美国国家科学基金会和沃尔玛基金会项目的支持。刘说:"现在已经有一些智能可穿戴设备,比如智能手表可以跟踪你的运动和人体生命体征,但我们希望将来你的日常服装也能实现这些功能。时尚并不像很多人认为的那样只是颜色和款式,时尚就是科学。"...PC版:https://www.cnbeta.com.tw/articles/soft/1403673.htm手机版:https://m.cnbeta.com.tw/view/1403673.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人