微软预计10年内实现打造量子超级计算机的工作

微软预计10年内实现打造量子超级计算机的工作这是微软推出的一项新衡量标准,因为整个行业的目标是超越当前嘈杂的中规模量子(NISQ)计算时代。“我们以几年而不是几十年来考虑我们的路线图和量子超级计算机的时间,”斯沃尔说。去年,微软宣布了一项重大突破,其团队首次强调了其创建基于马约拉纳的量子位的能力。马约拉纳量子位的优点是非常稳定(特别是与传统技术相比),但它们也极难创建。微软很早就对这项技术下了赌注,现在,在首次宣布这一里程碑一年后,该团队正在发表一篇新的同行评审论文(在美国物理学会的物理评论B中),证明它确实已经在它通往量子超级计算机的道路。为了达到这一点,微软展示了比一年前首次宣布这项工作时更多的设备和更多的数据的结果。“今天,我们确实处于基础实施水平,”斯沃尔说。我们有嘈杂的中型量子机。它们是围绕物理量子位构建的,而且还不够可靠,无法做一些实用且有利的事情。用于科学或商业行业。作为一个行业,我们需要达到的下一个水平是弹性水平。我们不仅需要能够使用物理量子位进行操作,而且还需要将这些物理量子位放入纠错码中,并将它们用作一个单元来充当逻辑量子位。”Svore认为,要达到这一点,需要一台量子计算机能够每秒执行一百万次可靠的量子操作,并且失败率为万亿分之一。现在的下一步是构建受硬件保护的量子位——Svore表示,该团队在构建这些量子位的工作中正在取得巨大进展。这些量子位很小(一侧小于10微米)并且速度足够快,可以在不到一微秒的时间内执行一个量子位操作。之后,该团队计划致力于纠缠这些量子位,并通过一种称为“编织”的过程来操作它们,这个概念至少从2000年代初就已经被讨论过(主要作为理论)。从那里开始,微软将构建一个更小的多量子位系统并演示一个完整的量子系统。这显然是一个雄心勃勃的路线图,考虑到微软花了多长时间才实现第一个里程碑,我们需要耐心等待团队现在的执行情况。IBM、IonQ和其他公司的目标都是类似的结果,但更倾向使用更成熟的方法来构建量子位,也就是说,我们现在正处于一场超越NISQ时代的军备竞赛。除了分享其路线图外,微软今天还宣布了AzureQuantumElements,这是其通过结合高性能计算、人工智能和量子来加速科学发现的平台,以及AzureQuantum的Copilot,这是一种经过专门训练的人工智能模型,可以帮助科学家(和学生)生成与量子相关的计算和模拟。...PC版:https://www.cnbeta.com.tw/articles/soft/1366701.htm手机版:https://m.cnbeta.com.tw/view/1366701.htm

相关推荐

封面图片

IBM发布量子计算芯片“苍鹭” 计划10年内造出超级计算机

IBM发布量子计算芯片“苍鹭”计划10年内造出超级计算机量子计算芯片,错误率创下历史新低当地时间12月4日,IBM在公司量子峰会上首次推出了量子计算芯片“IBMQuantumHeron”(苍鹭),这是IBM历史上第一个实用级量子处理器。“苍鹭”处理器拥有133个固定频率量子位,超过了127个量子位的“Eagle”(老鹰)处理器。IBM称,与“老鹰”相比,“苍鹭”处理器的设备性能提高了3至5倍,而且它的错误率创下了历史新低,比之前的量子处理器低三分之二。明年,将有更多“苍鹭”处理器将加入IBM行业领先的公用事业规模系统群。新型模块化系统亮相,超级计算机距离走进现实不远了另外,IBM还推出了该公司第一台拥有1000多个量子位的量子计算机IBM量子系统二号,相当于普通计算机中的量子位。据悉,该量子计算机将搭载3个“苍鹭”处理器运行。IBM向业界展示了新型模块化系统,将机器内部的处理器连接在一起,然后将机器连接在一起,以形成模块化系统,当与新的纠错代码相结合时,有望在2033年生产出引人注目的量子机器,即包括1000个逻辑量子位的超级计算机,全面释放量子计算的能量。IBM高级副总裁兼研究总监DarioGil表示:“我们正处于量子计算机被用作探索科学新领域的工具的时代。”“随着我们继续推进量子系统,通过模块化架构扩展和提供价值,我们将进一步提高公用事业规模量子技术堆栈的质量,并将其交到我们的用户和合作伙伴手中,他们将突破量子技术的界限更复杂的问题。”量子计算的关键障碍——出错概率大相较于传统计算机,量子计算利用量子的纠缠和叠加,实现更加强大的并行计算能力,且计算速度要快得多。但是,这些量子态也是出了名的变化无常,出错概率很大。为了解决这个问题,物理学家尝试通过诱导多个物理量子位(例如,每个物理量子位或单个离子编码在超导电路中)来共同编码一个信息量子位,即所谓的“逻辑量子位”。研究人员普遍表示,最先进的纠错技术每个“逻辑量子位”需要1000多个物理量子位,一台可以进行有用计算的机器需要拥有数百万个物理量子位。但近几个月来,物理学家对一种称为量子低密度奇偶校验(qLDPC)的替代纠错方案越来越感兴趣。根据IBM研究人员的1号预印本,这一数字将减少10倍或更多。该公司表示,现在将专注于构建芯片,该芯片旨在在400个左右的物理量子位中容纳一些经过qLDPC校正的量子位,然后将这些芯片连接在一起。马萨诸塞州剑桥市哈佛大学的物理学家MikhailLukin表示,IBM的预印本是“出色的理论著作”。“话虽这么说,用超导量子位实现这种方法似乎极具挑战性,甚至可能需要数年时间才能在这个平台上尝试概念验证实验,”Lukin说。问题是qLDPC技术要求每个量子位直接连接到至少6个其他量子位。在传统超导芯片中,每个量子位仅连接到2-3个相邻量子位。但位于纽约约克敦高地IBM托马斯·J·沃森研究中心的凝聚态物理学家兼IBMQuantum首席技术官OliverDial表示,该公司有一个计划:它将在其量子计算机的设计中添加一层量子芯片,以允许qLDPC方案所需的额外连接。IBM量子副总裁JayGambetta表示,该公司一直在采取双轨方法来准备硬件,包括开发持续大量制造高质量量子位的能力。他表示,超过1121个超导量子位的Condor表明该公司在这方面处于良好状态,IBM在周一推出了这款处理器。“它的量子位小了大约50%,”Gambetta对媒体表示,“收益率就在那里——我们的收益率接近100%。”IBM一直致力于研究的第二个问题是,限制对单个或成对的量子位进行操作时发生的错误。改变量子位的状态会产生微妙的信号,这些信号可能会渗透到相邻量子位中,这种现象就是所谓的串扰。“苍鹭”在新型处理器中属于较小的一款,代表了IBM研发团队4年来为提高门性能所做的努力。“这是一个漂亮的设备,”Gambett说,“它比以前的设备好5倍,错误少得多,而且串扰无法真正测量。”量子计算何时能实现商业化?尽管这项量子计算研究具有里程碑意义,但截至目前仍无法实现商业化。“这一直是一个梦想,而且一直是一个遥远的梦想,”Dial说,“实际上,让它足够接近,让我们能够看到我们今天所处的位置,对我来说是巨大的。”IBM将其量子开发路线图延长10年至2033年,以构建计算、纠错能力更强大的系统。另外,到2024年底,IBM计划在美国、加拿大、日本和德国建立八个量子计算中心,以确保研究人员广泛使用量子系统二号。Gambetta同时表示:“我们需要一段时间才能从科学价值转向商业价值。”“但在我看来,研究和商业化之间的区别正在变得越来越紧密。”IBM研究人员表示,最近的进展增强了他们对量子计算长期潜力的信心,尽管他们没有预测量子计算何时会进入商业主流。...PC版:https://www.cnbeta.com.tw/articles/soft/1402181.htm手机版:https://m.cnbeta.com.tw/view/1402181.htm

封面图片

微软量子计算机运行 14000 次实验无差错

微软量子计算机运行14000次实验无差错量子计算机制造商Quantinuum的工程师团队与微软公司的计算机科学家合作,找到了一种在量子计算机上运行实验时大大减少错误的方法。在这项新研究中,Quantinuum提供H2计算机(基于离子陷阱量子比特),微软负责提供逻辑量子比特软件。他们共同使用30个物理量子比特创建了4个逻辑量子比特。该软件可在计算时诊断并纠正错误,而不会通过其主动伴随式提取技术破坏逻辑量子比特。

封面图片

IBM计算机“基准”实验显示量子计算机将在两年内超越传统计算机

IBM计算机“基准”实验显示量子计算机将在两年内超越传统计算机这项新研究的成果发表在上周的《自然》杂志上。科学家们使用IBM量子计算机Eagle来模拟真实材料的磁性,处理速度比传统计算机更快。IBM量子计算机之所以能超越传统计算机,是因为其使用了一种特殊的误差缓解过程来补偿噪声带来的影响。而噪声正是量子计算机的一个基本弱点。基于硅芯片的传统计算机依赖于“比特(bit)”进行运算,但其只能取0或1这两个值。相比之下,量子计算机使用的量子比特可以同时呈现多种状态。量子比特依赖于量子叠加和量子纠缠等量子现象。理论上这使得量子比特的计算速度更快,而且可以真正实现并行计算。相比之下,传统计算机基于比特的计算速度很慢,而且需要按顺序依次进行。但从历史上看,量子计算机有一个致命的弱点:量子比特的量子态非常脆弱,来自外部环境的微小破坏也会永远扰乱它们的状态,从而干扰所携带的信息。这使得量子计算机非常容易出错或“出现噪声”。在这一新的原理验证实验中,127量子比特的Eagle超级计算机用建立在超导电路上的量子比特计算了二维固体的完整磁性状态。然后,研究人员仔细测量每个量子比特所产生的噪声。事实证明,诸如超级计算材料中的缺陷等因素可以可靠预测每个量子比特所产生的噪声。据报道,研究小组随后利用这些预测值来模拟生成没有噪音的结果。量子霸权的说法之前就出现过。2019年,谷歌的科学家们声称,公司开发的量子计算机Sycamore在200秒内解决了一个普通计算机需要1万年才能破解的问题。但谷歌量子计算机所解决的问题本质上就是生成一长串随机数,然后检查它们的准确性,并没有什么实际用途。相比之下,用IBM量子计算机完成的新实验是一个高度简化但有真实应用价值的物理问题。2019年谷歌量子霸权研究成果参与者之一、加州大学圣巴巴拉分校物理学家约翰·马丁尼斯(JohnMartinis)表示,“这能让人们乐观认为,它将在其他系统和更复杂的算法中发挥作用。”(辰辰)...PC版:https://www.cnbeta.com.tw/articles/soft/1366285.htm手机版:https://m.cnbeta.com.tw/view/1366285.htm

封面图片

量子飞跃:IBM的纠错策略助其超越经典超级计算机

量子飞跃:IBM的纠错策略助其超越经典超级计算机冷却IBMEagle的低温恒温器的内部视图,包含127个量子比特,可以作为科学工具来探索经典方法可能无法解决的新规模问题。资料来源:IBMResearch不过,最近的一项研究表明,即使没有强大的纠错能力,也有办法减少误差,使量子计算机在当今世界发挥重要作用。纽约IBM量子公司的研究人员与加州大学伯克利分校和劳伦斯伯克利国家实验室的合作者在《自然》杂志上报告说,他们将一台127量子比特的量子计算机与一台最先进的超级计算机进行了比较。至少在一项特定的计算中,量子计算机的性能超过了超级计算机。研究人员之所以选择这项计算,并不是因为它对经典计算机特别具有挑战性,而是因为它类似于物理学家经常进行的计算。重要的是,计算的复杂程度可以提高,以测试目前噪声大、易出错的量子计算机能否为特定类型的普通计算提供精确结果。量子计算机在计算变得越来越复杂的过程中产生了可验证的正确解,而超级计算机算法却产生了错误答案,这一事实给人们带来了希望,即采用减少错误的量子计算算法,而不是更困难的纠错算法,可以解决尖端物理问题,如了解超导体和新型电子材料的量子特性。加州大学伯克利分校研究生、该研究合著者萨简特-阿南德(SajantAnand)说:"我们正在进入这样一个阶段:量子计算机可能能够完成目前经典计算机算法无法完成的事情。"IBM量子公司量子理论与能力高级经理萨拉-谢尔顿(SarahSheldon)补充说:"我们可以开始将量子计算机视为研究问题的工具,否则我们就无法研究这些问题。"反过来说,量子计算机对经典计算机的胜利可能会激发新的想法,以增强目前经典计算机上使用的量子算法,加州大学伯克利分校物理学副教授、托马斯和艾莉森-施耐德物理学讲座教授迈克尔-扎莱特尔(MichaelZaletel)说:"在研究过程中,我非常确信经典方法会比量子方法做得更好。因此,当IBM的零噪声外推版本比经典方法做得更好时,我百感交集。但是,思考量子系统是如何工作的,实际上可能会帮助我们找出处理问题的正确经典方法。虽然量子计算机做到了标准经典算法所做不到的事情,但我们认为这对改进经典算法是一个启发,以便将来经典计算机能像量子计算机一样运行良好。"增强噪声以抑制噪声IBM量子计算机看似优势的关键之一是量子错误缓解,这是一种处理量子计算噪音的新技术。自相矛盾的是,IBM的研究人员可控地增加量子电路中的噪声,从而得到噪声更大、更不准确的答案,然后向后推断计算机在没有噪声的情况下会得到的答案。这依赖于对影响量子电路的噪声的充分了解,以及对噪声如何影响输出的预测。之所以会出现噪声问题,是因为IBM的量子比特是敏感的超导电路,代表二进制计算中的0和1。当量子比特纠缠在一起进行计算时,热量和振动等不可避免的干扰会改变纠缠,从而带来误差。纠缠程度越高,噪声的影响就越大。此外,作用于一组量子比特的计算会在其他未参与计算的量子比特中引入随机误差。额外的计算会加剧这些错误。科学家们希望利用额外的量子比特来监测这些错误,以便对其进行纠正,这就是所谓的容错纠错。但是,实现可扩展的容错是一项巨大的工程挑战,对于数量越来越多的量子比特来说,容错是否可行还有待验证,Zaletel说。取而代之的是,IBM工程师提出了一种被称为零噪声外推法(ZNE)的误差缓解策略,即利用概率方法可控地增加量子设备上的噪声。根据一名前实习生的建议,IBM研究人员找到了阿南德、博士后研究员吴艳涛和Zaletel,请他们帮助评估使用这种误差缓解策略所获得结果的准确性。Zaletel开发了超级计算机算法来解决涉及量子系统的困难计算,例如新材料中的电子相互作用。这些算法采用张量网络模拟,可直接用于模拟量子计算机中相互作用的量子比特。Cori于2017年推出,是CrayXC40系列中的一个型号,拥有约30petaflops的惊人峰值性能,稳居当时全球超级计算机的第五位。它配备了2388个英特尔至强"Haswell"处理器节点、9,688个英特尔至强Phi"Knight'sLanding"节点和1.8PB的CrayDataWarpBurstBuffer固态设备,它的名字是为了纪念著名的生物化学家GertyCori。值得一提的是,GertyCori是第一位获得诺贝尔科学奖的美国女性,也是诺贝尔生理学或医学奖的首位女性获得者。Cori超级计算机于2023年5月31日退役。资料来源:伯克利实验室量子与经典:实验在几周的时间里,IBMQuantum的YoungseokKim和AndrewEddins在先进的IBMQuantumEagle处理器上运行了越来越复杂的量子计算,然后Anand在伯克利实验室的Cori超级计算机和Lawrencium集群以及普渡大学的Anvil超级计算机上使用最先进的经典方法尝试了同样的计算。当量子鹰于2021年推出时,它拥有所有量子计算机中数量最多的高质量量子比特,似乎超出了经典计算机的模拟能力。事实上,在经典计算机上精确模拟所有127个纠缠的量子比特需要天文数字的内存。量子态需要用127个独立数字的2的幂来表示。也就是1后面跟38个零;一般计算机可以存储约1000亿个数字,少了27个数量级。为了简化问题,阿南德、吴和扎莱特尔使用了近似技术,使他们能够在经典计算机上以合理的时间和成本解决这个问题。这些方法有点像jpeg图像压缩,即在可用内存的限制下,去掉不那么重要的信息,只保留获得准确答案所需的信息。Anvil超级计算机是一台功能强大的超级计算机,可提供先进的计算能力,支持各种计算和数据密集型研究。资料来源:普渡大学阿南德证实了量子计算机在不太复杂的计算中结果的准确性,但随着计算深度的增加,量子计算机的结果与经典计算机的结果出现了偏差。对于某些特定参数,阿南德能够简化问题并计算出精确解,从而验证量子计算结果优于经典计算机计算结果。在所考虑的最大深度上,虽然没有精确的解,但量子和经典结果却不一致。研究人员提醒说,虽然他们无法证明量子计算机对最难计算的最终答案是正确的,但"老鹰"在前几次运行中取得的成功让他们确信这些答案是正确的。"量子计算机的成功并非偶然。它实际上适用于整个电路家族,"扎莱特尔说。友好竞争与未来展望虽然扎莱特尔对预测这种减少错误的技术是否适用于更多的量子比特或更深入的计算持谨慎态度,但他说,这些结果还是鼓舞人心的。他说:"这激发了一种友好竞争的感觉,我认为我们应该能够在经典计算机上模拟他们正在做的事情。但我们需要用一种更聪明、更好的方式来思考这个问题--量子设备正处于一个表明我们需要不同方法的阶段。"一种方法是模拟IBM开发的ZNE技术。阿南德说:"现在,我们要问的是,我们能否将同样的误差缓解概念应用到经典张量网络模拟中,看看能否获得更好的经典结果。这项工作让我们有能力使用量子计算机作为经典计算机的验证工具,这颠覆了通常的做法。"...PC版:https://www.cnbeta.com.tw/articles/soft/1377527.htm手机版:https://m.cnbeta.com.tw/view/1377527.htm

封面图片

新研究揭示重新配置的经典计算机有能力超越量子计算机

新研究揭示重新配置的经典计算机有能力超越量子计算机量子计算被誉为一种在速度和内存使用方面都能超越经典计算的技术,有可能为预测以前不可能预测的物理现象开辟道路。许多人认为,量子计算的出现标志着经典或传统计算模式的转变。传统计算机以数字比特(0和1)的形式处理信息,而量子计算机则采用量子比特(量子位),以0和1之间的数值存储量子信息。在某些条件下,这种以量子位处理和存储信息的能力可用于设计量子算法,从而大大超越经典算法。值得注意的是,量子以0和1之间的数值存储信息的能力使得经典计算机很难完美地模拟量子计算机。然而,量子计算机很不稳定,容易丢失信息。此外,即使可以避免信息丢失,也很难将其转化为经典信息,而经典信息是进行有用计算的必要条件。经典计算机不存在这两个问题。此外,巧妙设计的经典算法可以进一步利用信息丢失和翻译这两个难题,以比以前想象的要少得多的资源模拟量子计算机--正如最近发表在《PRXQuantum》杂志上的一篇研究论文所报告的那样。科学家们的研究结果表明,与最先进的量子计算机相比,经典计算可以通过重新配置来执行更快、更精确的计算。这一突破是通过一种算法实现的,这种算法只保留了量子态中存储的部分信息--只够精确计算最终结果。纽约大学物理系助理教授、论文作者之一德里斯-塞尔斯(DriesSels)解释说:"这项工作表明,改进计算的潜在途径有很多,包括经典方法和量子方法。此外,我们的工作还凸显了利用容易出错的量子计算机实现量子优势有多么困难。"为了寻求优化经典计算的方法,塞尔斯和他在西蒙斯基金会的同事们把重点放在了一种能忠实呈现量子比特之间相互作用的张量网络上。这些类型的网络出了名的难处理,但该领域的最新进展使得这些网络可以借用统计推理的工具进行优化。作者将该算法的工作与将图像压缩成JPEG文件进行了比较,JPEG文件可以通过消除信息,在几乎感觉不到图像质量损失的情况下,使用更少的空间来存储大型图像。"为张量网络选择不同的结构,就相当于选择不同的压缩形式,就像为图像选择不同的格式,"领导该项目的Flatiron研究所约瑟夫-廷德尔(JosephTindall)说。"我们正在成功开发用于处理各种不同张量网络的工具。这项工作反映了这一点,我们相信,我们很快就会进一步提高量子计算的标准。"编译自:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1426054.htm手机版:https://m.cnbeta.com.tw/view/1426054.htm

封面图片

研究人员发现了阻碍量子计算机发展的物理极限

研究人员发现了阻碍量子计算机发展的物理极限维也纳科技大学的研究人员发现,时间测量设备存在一种新的权衡,可能对大规模量子计算机性能设定硬性限制。尽管问题不紧迫,但我们将量子操作系统从原型发展为实用计算机将面临越来越大的挑战。时间的度量受到物理限制,其中一个限制是时间分割的精度。"时间测量总是与熵有关,"维也纳科技大学量子信息与量子热力学交叉研究小组负责人、高级作者MarcusHuber说。研究表明,除非有无限能量,否则快速计时钟最终会遇到精度问题。时钟要么运行得快,要么运行得精确,两者不能同时兼得。对于量子计算等技术而言,时间的准确性至关重要。粒子数量增加时,计算的时间变得更加有限。虽然其他因素也限制量子计算机的精度,但时间测量的基本极限也起着关键作用。量子计算机的未来稳定性和性能,可能取决于我们是否能够解决时间测量方面的物理障碍。——(概述)

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人