科学家发现对称性破坏的第一个证据 它可以解释你为什么存在

科学家发现对称性破坏的第一个证据它可以解释你为什么存在佛罗里达大学的天文学家通过研究一百万万亿个星系四联体,首次发现了宇宙诞生之初必然违反对称性的证据,揭示了宇宙更喜欢某些形状而不是它们的镜像,这是一种已知的现象作为宇称对称性破坏。这一发现不仅强化了大爆炸理论的暴胀方面,而且还为宇宙学最大的谜团之一提供了线索:为什么物质比反物质更多?但要确定这种存在对称性破坏背后的根源,甚至找到证据,都是不可能的。然而,在一篇新论文中,佛罗里达大学的天文学家发现了第一个证据,证明在创造时这种必要的对称性破坏。佛罗里达大学的科学家研究了宇宙中多达数百万万亿个三维星系四联体,发现宇宙在某个时刻更喜欢一组形状而不是它们的镜像。这个被称为宇称对称破坏的想法指出了宇宙历史上的一个极小的时期,当时的物理定律与今天不同,对宇宙的演化产生了巨大的影响。这一发现具有高度的统计可信度,有两个主要后果。首先,这种宇称不守恒只能在宇宙诞生之初的极端膨胀时期才会在未来的星系中留下印记,从而证实了宇宙起源大爆炸理论的核心组成部分。宇称不守恒也有助于回答也许是宇宙学中最关键的问题:为什么有东西而不是空无一物?这是因为需要宇称不守恒来解释为什么物质比反物质更多,而反物质是星系、恒星、行星和生命以现有方式形成的必要条件。“我一直对有关宇宙的重大问题感兴趣。宇宙的开始是什么?它的演化遵循什么规则?为什么有东西而不是没有?”监督这项新研究的佛罗里达大学天文学教授ZacharySlepian说。“这项工作解决了这些大问题。”Slepian与佛罗里达大学博士后研究员、该研究的第一作者JiaminHou以及劳伦斯伯克利国家实验室物理学家RobertCahn合作进行了分析。三人最近在《皇家天文学会月刊》杂志上发表了他们的发现。这些研究人员在最近发表在《物理评论快报》上的一篇论文中首次提出了利用星系四联体寻找宇称不守恒的想法。宇称对称性是指物理定律不应该偏爱一种形状而不是其镜像。科学家通常用“惯用手”的语言来描述这种特征,因为我们的左手和右手是我们都熟悉的镜像,但无法在三个维度上旋转您的左手,使其看起来像您的右手,这意味着它们始终可以彼此区分。宇称破坏意味着宇宙确实偏爱左手或右手形状。为了发现宇宙的旋向性,斯莱皮安的实验室想象了由空间中的假想线连接的四个星系的所有可能组合。这形成了一个称为四面体的3D物体,就像一个不平衡的金字塔——具有镜像的最简单的形状。他们根据星系在这些假想形状中与最近和最远伙伴的连接方式来定义右手和左手星系四面体。他们的方法需要分析一百万个星系中每一个的一万亿个想象的四面体,这是一个令人难以置信的组合数量。“最终我们意识到我们需要新的数学,”斯莱皮安说。因此,Slepian的团队开发了复杂的数学公式,可以在合理的时间内执行大量计算。它仍然需要大量的计算能力。“我们拥有HiPerGator超级计算机的用友独特技术使我们能够使用不同的设置运行分析数千次来测试我们的结果,”他说。分析的技术方面很难说宇宙更喜欢“右手”还是“左手”形状,但科学家们看到了明确的证据表明宇宙确实有这种偏好。他们以称为“七西格玛”的确定性确定了他们的发现,这是衡量仅凭机会获得结果的可能性有多大的指标。在物理学中,西格玛值为5或更高的结果通常被认为是可靠的,因为在此级别出现偶然结果的几率微乎其微。一位前Slepian实验室成员进行的类似分析发现了相同的普遍形状偏好,尽管由于研究设计的差异,统计可信度稍低。尽管科学家们对宇称不守恒的信号充满信心,但潜在测量的不确定性仍然有可能解释这种不对称性。值得庆幸的是,下一代望远镜提供的更大的星系样本可以提供足够的数据,在短短几年内消除这些不确定性。佛罗里达大学的斯莱皮安团队将作为暗能量光谱仪器望远镜团队的一部分,对这些新的、更可靠的数据进行分析。这并不是第一次发现宇称不守恒,但这是宇称不守恒可能影响宇宙星系三维聚类的第一个证据。基本力之一:弱力,也违反宇称。但其影响范围极为有限,无法影响星系的规模。这种银河影响需要宇称不守恒发生在大爆炸的那一刻,这个时期被称为暴胀。斯莱皮安说:“由于宇称不守恒只能在暴胀期间铭刻在宇宙上,如果我们的发现是真的,它就为暴胀提供了确凿的证据。”弱力的宇称不守恒也无法解释物质的丰富性。在对称的宇宙中,大爆炸应该产生等量的物质和反物质,它们会相互湮灭,使宇宙中没有恒星和行星。由于我们最终得到了一个主要由物质组成的宇宙,物理学家长期以来一直在寻找早期创造中不对称的一些迹象。斯莱皮安实验室的发现还无法解释我们如何最终获得如此丰富的物质。“如何”将需要超越标准模型的新物理学,它解释了我们当前的宇宙。但新的结果确实强烈表明,大爆炸的最初时刻存在不对称性。现在,科学家们正在竞相提出一种理论,以解释宇宙的镜像偏好和物质过剩。...PC版:https://www.cnbeta.com.tw/articles/soft/1367573.htm手机版:https://m.cnbeta.com.tw/view/1367573.htm

相关推荐

封面图片

约翰霍普金斯大学的科学家们设计出能打破对称的合成细胞

约翰霍普金斯大学的科学家们设计出能打破对称的合成细胞艺术家们利用显微镜图像和图形渲染,展示了一个能够感知定向化学线索并自我组织响应的最小合成细胞。图片来源:约翰-霍普金斯大学医学院井上实验室,由ShivaRazavi和TurhanPathan创作,经编辑了解对称性破坏细胞运动之前的一个步骤是打破对称,当细胞分子最初对称排列时,通常在受到刺激后重组为不对称的模式或形状。这类似于迁徙的鸟类在对阳光或地标等环境指南针做出反应时转变为新的队形,从而打破对称。在微观层面上,免疫细胞会感知集中在感染部位的化学信号,并打破对称,穿过血管壁到达受感染的组织。当细胞打破对称性时,它们会转变为极化和不对称结构,为向目标移动做好准备。"对称性破缺的概念对生命至关重要,影响着生物学、物理学和宇宙学等多个领域,"在约翰-霍普金斯大学攻读研究生时领导这项研究的希瓦-拉扎维(ShivaRazavi)博士说,他在约翰霍普金斯大学攻读研究生时领导了这项研究,现在是麻省理工学院的博士后研究员。"了解对称性破缺是解开生物学基本原理和发现如何利用这些信息来设计治疗方法的关键。"长期以来,人们一直认为找到在合成细胞中模仿和控制对称性破坏的方法对于了解细胞如何检测其化学环境并重新排列其化学轮廓和形状至关重要。在这项研究中,科学家们创造了一个带有双层膜的巨大囊泡--一个由磷脂、纯化蛋白质、盐和提供能量的ATP组成的裸体简化合成细胞或原细胞。原细胞呈球形,因此被昵称为"泡泡"。在实验中,科学家们成功地设计出了具有化学感应能力的原细胞,它能促使细胞打破对称性,从一个近乎完美的球体变成一个凹凸不平的形状。研究人员说,该系统专门设计用于模仿免疫反应的第一步,能够根据中性粒细胞感知到的周围蛋白质发出攻击病菌的信号。拉扎维说:"我们的研究展示了类细胞实体如何能够感知外部化学线索的方向,模拟生物体内的条件。通过从零开始构建类细胞结构,我们可以更好地识别和理解细胞以最简化的形式打破对称性所需的基本组成部分。"给药领域的未来应用科学家们说,有朝一日,化学传感可用于体内靶向给药。约翰-霍普金斯大学医学院细胞生物学教授、细胞动力学中心主任、资深作者井上隆成(TakanariInoue)博士说:"我们的想法是,可以把任何你想要的东西--蛋白质、RNA、DNA、染料或小分子--打包到这些气泡中,利用化学传感告诉细胞该去哪里,然后让细胞在预定目标附近破裂,这样药物就能被释放出来。"为了激活囊泡的化学感应能力,研究人员在合成细胞中植入了两种作为分子开关的蛋白质--FKBP和FRB。蛋白质FKBP被置于细胞中心,而FRB则被置于细胞膜上。当科学家们在气泡细胞外引入一种化学物质--雷帕霉素时,FKBP就会移动到细胞膜上与FRB结合,从而引发一种叫做肌动蛋白聚合的过程,也就是合成细胞骨架的重组。在原细胞内部,化学反应产生了由肌动蛋白组成的杆状结构,对细胞膜施加压力,使其弯曲。研究人员使用了一种名为共聚焦显微镜的专门快速三维成像技术来记录原细胞的化学感应能力;他们必须以每15到30秒一帧的速度快速记录图像,因为原细胞会对化学信号做出快速反应。下一步,研究人员的目标是让这些合成细胞具备向所需目标移动的能力。最终,研究人员希望设计出的合成细胞能在靶向药物输送、环境传感以及其他需要精确移动和对刺激做出反应的领域中发挥重要的潜在应用。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1434518.htm手机版:https://m.cnbeta.com.tw/view/1434518.htm

封面图片

科学家打破对称激发极化子 开启纳米光子学的未来

科学家打破对称激发极化子开启纳米光子学的未来在发表于《eLight》的一篇新论文中,由华中科技大学张新亮教授、李培宁教授和中国地质大学戴志高教授领导的科学家团队开发出一种新技术,通过控制近场激发源,实现各向异性HPs的平面内激发和传播。他们的研究拓展了操纵非对称极化子的可能性,可应用于可重构的极化子器件。晶体表面的光盘天线为打破双曲极化子的对称性提供了面内极化激发源。资料来源:中国地质大学/刘璐最近,人们在低对称性单斜晶体中发现了双曲剪切极化子,也称为镜像对称断裂极化子。这些剪切极化子的非对称性源于低对称晶体固有的非赫密特介电常数张量,而高对称晶体不具备这种特性。研究小组研究了线性极化面内源对在高对称性、低损耗系统中产生具有增强定向传播的对称破缺HP的影响。研究小组通过理论和实验证明,控制近场激励源可以配置平面内HP的激励和传播。它可以打破平面高压的镜像对称性,而无需低晶体对称性。该团队的源配置方法能够在宽广的频率范围内调整非对称极化子的传播,从而为纳米尺度上光引导和传播的动态稳健控制建立了新的自由度。他们的研究成果拓展了操纵极化子的可能性,并可应用于可重构极化子器件,用于偏振相关的纳米光子电路或光隔离。...PC版:https://www.cnbeta.com.tw/articles/soft/1381075.htm手机版:https://m.cnbeta.com.tw/view/1381075.htm

封面图片

一项新研究揭示了电子不对称性和物质存在的奥秘

一项新研究揭示了电子不对称性和物质存在的奥秘如果宇宙是完全对称的,物质和反物质的数量相等,故事的结局是我们将永远不会存在。但是一定有一个不平衡--一些剩余的质子、中子和电子--形成了原子、分子、恒星、行星、星系,并最终形成了人。电子是由负电荷组成的,JILA的科学家们一直试图测量这种电荷在电子的南北两极之间的分布是否均匀。任何不均匀都表明电子不是完美的圆形,而这将是早期宇宙中导致物质存在的不对称的证据。JILA的康奈尔小组研究了分子中的电子在调整其周围的磁场时的表现,以寻找电子的任何位移"如果宇宙是完全对称的,那么除了光以外就什么都没有了。这是历史上一个极为重要的时刻。突然间,宇宙中出现了一些东西,而问题是,为什么?"NIST/JILA研究员EricCornell说。"为什么我们会有这种不对称性?"解释我们宇宙的数学理论和方程式要求对称性。粒子理论家已经改进了这些理论,以解决不对称性的存在。但如果没有证据,这些理论只是数学,康奈尔解释说,所以包括他在JILA的小组在内的实验物理学家一直在寻找基本粒子,如电子的不对称迹象。现在,JILA小组对电子进行了破纪录的测量,缩小了对这种不对称性来源的搜索范围。其研究结果已发表在《科学》上。JILA由美国国家标准与技术研究所(NIST)和科罗拉多大学博尔德分校共同运营。寻找不对称性证据的一个地方是电子的电偶极矩(eEDM)。电子是由负电荷组成的,而eEDM表明该电荷在电子的南北两极之间分布的均匀程度。任何高于零的eEDM测量值都将证实存在不对称性;电子将更像蛋形而不是圆形。但是没有人知道这种偏差可能有多小。"我们需要修正我们的数学,使之更接近现实,"康奈尔在JILA的研究小组的一名研究生谭雅·鲁西说。"我们正在寻找这种不对称性可能存在的地方,这样我们就可以了解它来自哪里。电子是基本粒子,它们的对称性告诉我们关于宇宙的对称性。"康奈尔、鲁西和他们在NIST和JILA的团队最近创造了精确测量eEDM的记录,比以前的测量结果提高了2.4倍。这有多精确呢?鲁西解释说,如果一个电子有地球那么大,他们的研究发现,任何存在的不对称性都会小于原子的半径。她补充说,进行如此精确的测量是非常困难的,所以该小组需要聪明一点。研究人员研究了氟化铪的分子。如果他们在分子上施加一个强电场,非圆形的电子就会想与电场对齐,在分子内移动。如果它们是圆的,那么电子就不会移动。使用紫外激光,他们将电子从分子上剥离,形成一组带正电的离子,并将它们困住。交替使用诱捕器周围的电磁场,分子被迫与电磁场对齐或不对齐。然后,研究人员使用激光来测量两组的能量水平。如果它们之间的能级不同,这将表明电子是不对称的。他们的实验允许他们比过去的尝试有更长的测量时间,这给了他们更大的敏感性。然而,该小组的测量结果显示,电子没有移动能级,表明就我们目前所能测量到的情况而言,电子是圆形的。康奈尔指出,不能保证任何人都能找到eEDM的非零测量值,但是这种来自桌面实验的精确程度是一项成就。它表明,昂贵的粒子加速器并不是探索关于宇宙的这些基本问题的唯一手段,有很多途径可以尝试。虽然该小组没有发现不对称性,但其结果将有助于该领域继续寻找早期宇宙不对称性的答案。"我们发现到我们的测量为止,电子是对称的。如果我们会发现非零,这将是一个大问题,"鲁西补充说。"最好的赌注是让世界各地的科学家团队来研究不同的选项。只要我们都不断地测量真相,最终,有人会发现它。"...PC版:https://www.cnbeta.com.tw/articles/soft/1369605.htm手机版:https://m.cnbeta.com.tw/view/1369605.htm

封面图片

宇宙膨胀速度还在加快 科学家正寻求新的解释

宇宙膨胀速度还在加快科学家正寻求新的解释天文学家发现,宇宙膨胀正在加速,很可能是由于暗能量的作用,正如LambdaCDM模型所描述的那样。然而,膨胀率测量结果(即哈勃张力)的不一致性正促使人们研究新理论和修改现有模型。对天文学家来说,星系发出的光波长越长,星系远离我们的速度就越快。星系离我们越远,它的光线就越偏向光谱红色一侧的长波长--因此"红移"就越大。宇宙中的时间和距离因为光速是有限的、快速的,但并不是无限快的,所以看到远处的东西意味着我们看到的是它过去的样子。对于遥远的高红移星系,我们看到的是宇宙年轻时的样子。因此,"高红移"对应的是宇宙的早期,而"低红移"对应的是宇宙的晚期。詹姆斯-韦伯太空望远镜(JamesWebbSpaceTelescope)的深场图像显示了宇宙中闪闪发光的星系。这是迄今为止最深、最清晰的遥远宇宙红外图像。这张星系团SMACS0723的图像被称为"韦伯第一深场",细节丰富。图片来源:NASA、ESA、CSA和STScI但随着天文学家对这些距离的研究,他们了解到宇宙不仅在膨胀,其膨胀速度还在加快。这种膨胀速度甚至比主要理论预测的还要快,这让像我这样的宇宙学家感到困惑,并在寻找新的解释。加速膨胀与暗能量科学家把这种加速的源头称为暗能量。我们还不太清楚是什么驱动了暗能量,也不知道它是如何工作的,但我们认为它的行为可以用宇宙学常数来解释。阿尔伯特-爱因斯坦最初提出了这个常数--他在广义相对论中用lambda标记了它。有了宇宙常数,随着宇宙的膨胀,宇宙常数的能量密度保持不变。想象一个装满粒子的盒子。如果盒子的体积增大,粒子的密度就会减小,因为它们会分散开来占据盒子里的所有空间。现在想象同一个盒子,但随着体积的增大,粒子的密度保持不变。这似乎并不直观,对吗?宇宙常数的能量密度并没有随着宇宙的膨胀而减少,这当然非常奇怪,但这一特性有助于解释加速膨胀的宇宙。LambdaCDM:宇宙学标准模型目前,宇宙学的主要理论或标准模型被称为"LambdaCDM"。Lambda表示描述暗能量的宇宙常数,CDM代表冷暗物质。这个模型既描述了宇宙晚期的加速度,也描述了宇宙早期的膨胀率。具体来说,LambdaCDM可以解释宇宙微波背景的观测结果,即宇宙大爆炸后大约30万年时宇宙处于"高温、高密度状态"时的微波辐射余辉。利用普朗克卫星测量宇宙微波背景的观测结果,促使科学家们创建了LambdaCDM模型。将LambdaCDM模型与宇宙微波背景拟合,物理学家就可以预测哈勃常数的值,哈勃常数实际上并不是一个常数,而是描述宇宙当前膨胀速度的一个测量值。但是,LambdaCDM模型并不完美。科学家们通过测量星系距离计算出的膨胀率,与LambdaCDM利用宇宙微波背景观测数据描述的膨胀率并不一致。天体物理学家将这种分歧称为哈勃张力。宇宙膨胀的速度比流行的宇宙学模型预测的要快。资料来源:NASA/WMAP科学小组哈勃张力在过去的几年里,科学家一直在研究如何解释哈勃张力。这种张力可能表明LambdaCDM模型不完整,物理学家应该修改他们的模型,也可能表明研究人员是时候对宇宙的运行方式提出新的想法了。对于物理学家来说,新想法总是最令人兴奋的。解释哈勃张力的一种方法是修改LambdaCDM模型,改变宇宙晚期低红移时的膨胀率。像这样修改模型可以帮助物理学家预测可能是哪种物理现象导致了哈勃张力。例如,也许暗能量并不是宇宙常数,而是引力以新的方式发挥作用的结果。如果是这样的话,暗能量就会随着宇宙的膨胀而演化--而宇宙微波背景显示的是宇宙诞生几年后的样子,它对哈勃常数的预测就会有所不同。但是,团队的最新研究发现,物理学家无法仅仅通过改变宇宙晚期的膨胀率来解释哈勃张力--这一类的解决方案都不成立。探索新模型为了研究哪些类型的解决方案可以解释哈勃张力,加州大学开发了统计工具,使我们能够测试改变晚期宇宙膨胀率的整类模型的可行性。这些统计工具非常灵活,可以用它们来匹配或模仿不同的模型,这些模型有可能符合宇宙膨胀率的观测结果,也有可能为哈勃张力提供一种解决方案。测试的模型包括不断演化的暗能量模型,即暗能量在宇宙中不同时期的作用不同,科学家们还测试了暗能量-暗物质相互作用模型(暗能量与暗物质相互作用)和修正引力模型(引力在宇宙中不同时期的作用不同)。但这些模型都无法完全解释哈勃张力。这些结果表明,物理学家应该研究早期宇宙,以了解张力的来源。作者:RyanKeeley,加州大学默塞德分校物理学博士后...PC版:https://www.cnbeta.com.tw/articles/soft/1397839.htm手机版:https://m.cnbeta.com.tw/view/1397839.htm

封面图片

科学家完成迄今为止对电子永久电偶极矩的最精确测量

科学家完成迄今为止对电子永久电偶极矩的最精确测量一项新的研究提供了迄今为止对电子永久电偶极矩的最精确测量,为了解宇宙中物质与反物质之间的不平衡提供了重要依据。这项研究利用分子离子中的电子,将之前的最佳测量结果提高了约2.4倍,有助于完善或扩展粒子物理学的标准模型。粒子物理学标准模型(SM)预言了这种对称性的轻微破坏,但不足以解释实际观测到的不平衡。为了解决这一差异,人们对标准模型提出了许多扩展方案。为了测试这种模型扩展,测量电子电偶极矩(eEDM)--一种对称性破缺的测量方法--的桌面实验非常有前途。在这里,为了以极高的精度测量电子偶极矩,TanyaRoussy等人使用了一种强大的方法:将电子束缚在分子离子内部,置于巨大的分子内电场中。范明宇和安德鲁-贾伊奇在一篇相关的《视角》文章中写道:"鲁西等人花了大量精力仔细研究他们的实验仪器和测量技术,以便能够详细了解系统不确定性,确保不会错误地引入虚假信号。"他们的结果比之前的eEDM尺寸最佳上限提高了约2.4倍。...PC版:https://www.cnbeta.com.tw/articles/soft/1382803.htm手机版:https://m.cnbeta.com.tw/view/1382803.htm

封面图片

科学家们发现有史以来最强的同位素混合现象 挑战我们对核力的理解

科学家们发现有史以来最强的同位素混合现象挑战我们对核力的理解同位素混合是核物理学中的一个概念,指的是原子核中质子和中子之间几乎相同的性质所引起的对称性。1932年,诺贝尔奖获得者维尔纳·海森堡(WernerHeisenberg)引入了同位旋的概念,以解释由于质子和中子的相似性质而导致的原子核对称性,同位旋对称性理论至今仍被广泛接受。然而,由于质子-中子质量差异、库仑相互作用和核力的电荷相关方面,同位旋对称性并不严格守恒。这种不对称性导致允许的费米跃迁通过强同位旋混合分裂到许多状态,而不是在β衰变中被限制在一个状态。磷26的β延迟双质子衰变。探测同位旋混合在科学发现中获得了相当大的吸引力。富质子核的β衰变在探索同位旋混合中起着至关重要的作用。到目前为止,同位旋混合仅在几个β衰变实验中观察到,同位旋混合矩阵元素小于50keV,这可以用核模型很好地描述。IMP的科学家及其合作者提供了有关同位旋混合的新数据。他们在兰州放射性核束流线实验装置上对外来核磷26进行了β衰变实验,该束线位于兰州重离子研究装置内。通过β-延迟双质子发射的高精度核谱,科学家们清楚地识别出硅26中13055keV的等压模拟态(IAS)和13380keV和11912keV的两个新的高位态。他们测量了从硅26激发态发射的两个质子的角度相关性,表明这两个质子主要是按顺序发射的。令人惊讶的是,科学家们在硅26中观察到了强同位旋混合双峰、IAS和13380-keV态。确定了两种状态之间的大同位旋混合矩阵元素130(21)keV,代表在β衰变实验中观察到的最强混合。核模型无法很好地解释意想不到的实验结果,研究人员表示“这项工作中异常强烈的同位旋混合,可能与弱束缚(或连续体)效应或核变形有关,对我们对核力的理解提出了直接挑战。”...PC版:https://www.cnbeta.com.tw/articles/soft/1340495.htm手机版:https://m.cnbeta.com.tw/view/1340495.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人