韦伯太空望远镜在距我们超过120亿光年的星系中发现了复杂的有机分子

韦伯太空望远镜在距我们超过120亿光年的星系中发现了复杂的有机分子天文学家使用韦伯望远镜发现了此处显示的遥远星系中类似于烟雾或烟雾的复杂有机分子的证据。这个星系距离我们超过120亿光年,恰好与距离我们地球视角仅30亿光年的第二个星系几乎完美地排列在一起。在这张假色韦伯图像中,前景星系显示为蓝色,而背景星系显示为红色。有机分子以橙色突出显示。图片来源:J.Spilker/S.Doyle、NASA、ESA、CSA伊利诺伊大学厄巴纳-香槟分校天文学和物理学教授华金·维埃拉(JoaquinVieira)和研究生凯达尔·帕德克(KedarPhadke)与德克萨斯农工大学的研究人员和一个国际科学家团队合作,区分了星系中一些质量更大、更大的尘埃颗粒产生的红外信号和新观察到的碳氢化合物分子的那些。该研究结果发表在6月5日的《自然》杂志上。“这个项目开始于我在研究生院研究难以探测、被尘埃遮蔽的遥远星系时,”维埃拉说。“尘埃颗粒吸收并重新发射宇宙中大约一半的恒星辐射,使得来自遥远物体的红外光变得极其微弱或无法通过地面望远镜探测到。”韦伯观测到的星系显示了由一种称为透镜效应的现象引起的爱因斯坦环,当两个星系从我们在地球上的角度几乎完全对齐时就会发生这种现象。前景星系的引力导致背景星系的光线扭曲和放大,就像透过酒杯的杯脚看一样。由于透镜被放大,天文学家可以比其他方式更详细地研究非常遥远的星系。图片来源:S.Doyle/J.Spilker在这项新研究中,JWST受到了研究人员所说的“自然放大镜”的推动,这种现象被称为引力透镜效应。维埃拉说:“当两个星系从地球的角度来看几乎完全对齐时,就会发生这种放大,并且来自背景星系的光被前景星系扭曲并放大成环形形状,称为爱因斯坦环。”该团队将JWST聚焦于SPT0418-47,这是一个使用美国国家科学基金会南极望远镜发现的物体,之前被识别为一个被尘埃遮挡的星系,通过引力透镜放大了约30到35倍。研究人员表示,SPT0418-47距地球120亿光年,相当于宇宙年龄不到15亿年的时期,约为当前年龄的10%。维埃拉说:“在利用引力透镜和JWST的综合力量之前,我们既无法看到也无法在空间上解析穿过所有尘埃的实际背景星系。”本科生LilyKettler(左)、JoaquinVieira教授和研究生KedarPhadke是一个国际团队的成员,该团队在距离地球超过120亿光年的星系中检测到了复杂的有机分子,这是目前已知的最遥远的星系中存在这些分子存在。图片来源:弗雷德·兹威基JWST的光谱数据表明,SPT0418-47中模糊的星际气体富含重元素,这表明一代又一代的恒星已经存在和死亡。研究人员检测到的特定化合物是一种称为多环芳烃(PAH)的分子。在地球上,这些分子可以在内燃机或森林火灾产生的废气中找到。研究人员表示,这些有机分子由碳链组成,被认为是最早生命形式的基本组成部分。...PC版:https://www.cnbeta.com.tw/articles/soft/1368039.htm手机版:https://m.cnbeta.com.tw/view/1368039.htm

相关推荐

封面图片

330亿光年之遥 韦伯太空望远镜发现挑战天文学理论的星系

330亿光年之遥韦伯太空望远镜发现挑战天文学理论的星系詹姆斯-韦伯太空望远镜(JamesWebbSpaceTelescope)的近红外照相机(NIRCam)确认了有史以来第二远和第四远的星系(UNCOVERz-13和UNCOVERz-12)。这些星系位于潘多拉星团(Abell2744)中,这里显示的是已转换成可见光颜色的近红外线波长的光。主星团图像的比例尺以弧秒(arcseconds)为单位,弧秒是天空中角距的量度单位。黑白图片上的圆圈显示的是JWST星载NIRCam-F277W滤波波段中的星系,表示孔径大小为0.32弧秒。图片来源:星团图像:NASA,UNCOVER(Bezansonetal.,DIO:10.48550/arXiv.2212.04026)Insets:NASA,UNCOVER(Wangetal.,2023)合成:DaniZemba/宾夕法尼亚州立大学这些星系距离我们将近330亿光年,它们的距离之遥远令人难以置信,让我们可以深入了解最早的星系可能是如何形成的。独特的外观和意义研究人员说,在这个距离上确认的其他星系在图像中显示为红色圆点,而新星系则不同,它们的体积更大,看起来像一颗花生和一个蓬松的球。描述这些星系的论文今天(11月13日)发表在《天体物理学杂志通讯》(AstrophysicalJournalLetters)上。据天文学家估计,在这张来自美国宇航局詹姆斯-韦伯太空望远镜的潘多拉星团深场图像中,代表了5万个近红外光源。它们的光线经过不同的距离到达望远镜的探测器,在一张图像中代表了浩瀚的太空。图片来源:科学:NASA,ESA,CSA,IvoLabbe(Swinburne),RachelBezanson(UniversityofPittsburgh),ImageProcessing:阿丽莎-帕根(STScI)第一作者、宾夕法尼亚州立大学埃伯利科学学院博士后学者、负责这项研究的JWSTUNCOVER(再电离纪元之前的超深近红外探测器和近红外成像仪观测)团队成员王冰洁说:"我们对早期宇宙知之甚少,只有通过这些非常遥远的星系才能了解那个时代,并检验我们关于早期星系形成和成长的理论。在我们进行分析之前,我们只知道有三个星系被确认在这个极端距离附近。对这些新星系及其特性的研究揭示了早期宇宙中星系的多样性,以及从它们身上可以学到多少东西"。洞察早期宇宙由于这些星系的光线需要经过漫长的旅行才能到达地球,因此它为我们提供了一个了解过去的窗口。据研究小组估计,JWST探测到的光线是这两个星系在宇宙大约3.3亿岁时发出的,经过大约134亿光年的旅行才到达JWST。但研究人员说,由于这段时间宇宙的膨胀,这两个星系目前距离地球接近330亿光年。宾夕法尼亚州立大学天文学和天体物理学助理教授、UNCOVER小组成员乔尔-莱亚(JoelLeja)说:"这些星系发出的光非常古老,大约是地球年龄的三倍。这些早期星系就像灯塔,它们的光线穿过构成早期宇宙的稀薄氢气。只有通过它们的光,我们才能开始了解在宇宙黎明附近支配星系的奇异物理学。"科学家们利用詹姆斯-韦伯太空望远镜在潘多拉星系团中发现了两个遥远的星系,为我们了解早期宇宙提供了新的视角。这些星系在大小和外观上都很独特,挑战了我们对宇宙萌芽期星系形成的理解。资料来源:美国国家航空航天局值得注意的是,这两个星系比之前位于这些极端距离的三个星系要大得多。其中一个直径约为2000光年,至少大六倍。相比之下,银河系的直径约为10万光年,但是王说,早期宇宙被认为是非常压缩的,因此银河系如此之大令人惊讶。:"以前在这些距离上发现的星系都是点源--它们在我们的图像中显示为一个点。但我们的一个星系看起来是拉长的,几乎像花生,而另一个星系看起来像一个蓬松的球。目前还不清楚这种大小差异是由于恒星是如何形成的,还是形成后发生了什么,但星系性质的多样性确实很有趣。这些早期星系预计是由相似的物质形成的,但它们已经显示出彼此迥异的迹象"。研究方法这两个星系是潘多拉星系团的6万个光源之一,是JWST在2022年(即其科学运行的第一年)拍摄的首批深场图像之一中探测到的。之所以选择这一空间区域,部分原因是它位于几个星系团的后面,这些星系团会产生一种叫做引力透镜的自然放大效应。星系团的总质量所产生的引力会扭曲周围的空间,从而聚焦和放大经过附近的光线,并提供星系团背后的放大视图。在短短几个月的时间里,UNCOVER团队就将60000个光源缩小到700个候选星系供后续研究,他们认为其中8个可能是第一批星系。然后,JWST再次对准潘多拉星团,记录候选星系的光谱--一种详细记录每个波长发出的光量的指纹。"几个不同的团队正在使用不同的方法来寻找这些古老的星系,每个方法都有自己的长处和短处,"Leja说。"事实上,我们正对着太空中这个巨大的放大镜,这为我们提供了一个令人难以置信的深度窗口,但这个窗口非常小,所以我们在掷骰子。有几个候选天体都没有结论,至少有一个是认错了--它是一个模仿遥远星系的更近的东西。但我们很幸运,有两个竟然是这些古老的星系。这太不可思议了。"性质和影响研究人员还使用了详细的模型来推断这些早期星系在发出JWST检测到的光线时的性质。正如研究人员所预期的那样,这两个星系很年轻,它们的成分中几乎没有金属,而且正在快速生长,并积极地形成恒星。"最早的元素是在早期恒星的内核中通过聚变过程形成的,"Leja说。"这些早期星系没有金属等重元素是有道理的,因为它们是制造这些重元素的第一批工厂。当然,它们必须是年轻的恒星形成星系,才能成为第一批星系,但证实这些特性是对我们模型的重要基本检验,有助于证实大爆炸理论的整个范式。"研究人员指出,除了引力透镜,JWST强大的红外仪器应该能够探测到更远距离的星系,如果它们存在的话。"我们在这个区域只有一个很小的窗口,我们没有观测到这两个星系以外的任何东西,尽管JWST有这个能力。这可能意味着星系在此之前并没有形成,我们不会发现更远的星系。也可能意味着我们的小窗口不够幸运。"这项工作是向美国国家航空航天局(NASA)提交的一份成功提案的成果,该提案建议如何在JWST科学运行的第一年使用它。在前三个提交周期中,NASA收到的提案数量是望远镜可用观测时间的四到十倍,只能选择其中的一小部分。"当我们的建议被采纳时,我们的团队感到非常兴奋,也有些惊讶,"Leja说。"它涉及到协调、快速的人工操作,以及望远镜两次指向同一物体,这对第一年使用的望远镜来说要求很高。压力很大,因为我们只有几个月的时间来确定需要跟进的天体。但JWST就是为寻找这些第一批星系而建造的,现在能做到这一点实在是太令人兴奋了"。...PC版:https://www.cnbeta.com.tw/articles/soft/1396813.htm手机版:https://m.cnbeta.com.tw/view/1396813.htm

封面图片

詹姆斯·韦伯太空望远镜首次揭示出在早期星系附近隐藏的伴星系

詹姆斯·韦伯太空望远镜首次揭示出在早期星系附近隐藏的伴星系研究人员能够确定,这两个星系与地球的距离大致相同,并且处于同一邻域,这表明它们可能会相互作用并可能合并。这些星系的成熟金属性使科学家们推测,恒星的形成一定是非常有效的,并且在宇宙中很早就开始了。在扫描美国宇航局詹姆斯-韦伯太空望远镜(JWST)拍摄的一个著名的早期星系的首批图像时,康奈尔大学的天文学家们很感兴趣地看到了靠近其外缘的一个光团。他们最初的关注点以及红外观测站的目标是SPT0418-47,这是早期宇宙中最明亮的尘埃、恒星形成的星系之一,其远处的光线被一个前景星系的引力弯曲并放大成一个圆,称为爱因斯坦环。但是,对去年秋天发布的早期JWST数据的深入研究产生了一个偶然的发现:一个以前隐藏在前景星系光线后面的伴生星系,尽管它的年龄很小,估计为14亿年,但令人惊讶的是,它似乎已经承载了多代恒星。詹姆斯-韦伯太空望远镜的艺术画。来源:美国国家航空航天局康奈尔大学天体物理学和行星科学中心(CCAPS)的副研究员、论文第二作者AmitVishwas博士说,智利阿塔卡马大型毫米/亚毫米阵列(ALMA)拍摄的同一爱因斯坦环的早期图像含有被JSWT清晰解析的伴星的暗示,但它们不能被解释为除了随机噪音以外的东西。通过调查JWST的NIRSpec仪器所拍摄的图像中每个像素的光谱数据,研究人员Peng发现了环内的第二个新光源。他确定这两个新的光源是一个新星系的图像,它被负责创造环的同一个前景星系所引力,尽管它们的亮度要低8到16倍--这证明了JWST红外视觉的强大。对光的化学成分的进一步分析证实,来自氢、氮和硫原子的强发射线显示了类似的红移--这是衡量一个星系的光在越来越远的情况下延伸到更长、更红的波长的一个标准。这使得这两个星系与地球的距离大致相同--计算出的红移约为4.2,或约为宇宙年龄的10%--并且处于同一附近。为了验证他们的发现,研究人员回到了早期的ALMA观测。他们发现一条电离碳的发射线与JWST观测到的红移密切相关。Vishwas说:"我们有几条发射线的移位完全相同,所以毫无疑问,这个新星系就是我们认为的地方。"研究小组估计,这个被他们命名为SPT0418-SE的伴生星系在环的50千秒差距(Parszek)以内(秒差距是一个宇宙距离尺度,用以测量太阳系以外天体的长度单位。1秒差距约为3.26光年、206,000天文单位或31兆公里),这种级别的接近表明,这些星系必然会相互影响,甚至可能合并,这种观察增加了人们对早期星系如何演变为更大星系的理解。作为早期宇宙中的星系,这两个星系的质量并不高,其中"SE"相对较小,尘埃较少,这使得它看起来比极度被尘埃遮挡的环更蓝。根据附近具有类似颜色的星系的图像,研究人员认为它们可能居住在"一个具有尚未被发现的邻居的大规模暗物质晕中"。考虑到这些星系的年龄和质量,最令人惊讶的是它们的成熟金属性--比氦和氢更重的元素的数量,如碳、氧和氮--该小组估计与我们的太阳相似。与太阳相比,它大约有40亿年的历史,并且从前几代恒星那里继承了大部分金属,这些恒星大约有80亿年的时间来建立它们,我们是在宇宙不到15亿年的时候观察这些星系。研究人员已经提交了一份关于JWST观测时间的提案,以继续研究该星环及其伴星,并调和光学和远红外光谱之间观察到的潜在差异。...PC版:https://www.cnbeta.com.tw/articles/soft/1355239.htm手机版:https://m.cnbeta.com.tw/view/1355239.htm

封面图片

詹姆斯·韦伯太空望远镜揭示了宇宙中最古老的星团

詹姆斯·韦伯太空望远镜揭示了宇宙中最古老的星团这项工作是由一个加拿大天文学家团队进行的,包括来自多伦多大学文理学院邓拉普天文学和天体物理学研究所的专家。邓拉普天文学与天体物理学研究所的博士后研究员LamiyaMowla说:"JWST是为了寻找第一批恒星和第一批星系而建造的,并帮助我们了解宇宙中复杂性的起源,如化学元素和生命的构件,"他是这项研究的共同主要作者,这项研究是由加拿大NIRISS无偏群调查(CANUCS)小组进行的。"韦伯第一深场的这一发现已经提供了对恒星形成最早阶段的详细观察,证实了JWST令人难以置信的力量。"研究人员研究了位于韦伯第一深场的闪亮星系,并利用JWST确定它周围的五个闪亮物体是球状星团。图片来源:加拿大航天局,图片来自NASA、ESA、CSA、STScI;Mowla、Iyer等人,2022年在精细的韦伯第一深场图像中,天文学家们很快就锁定了他们称之为"火花星系"的的天体。这个星系位于90亿光年之外,它的名字来自于它周围出现的黄红色小点的紧凑物体,研究人员称之为"火花"。研究小组确定,这些火花可能是正在形成恒星的年轻星团--诞生于大爆炸后30亿年的恒星形成高峰期,也可能是古老的球状星团。球状星团是一个星系萌芽时期的古老恒星集合体,包含了关于其最早形成和成长阶段的线索。通过对其中12个紧凑物体的初步分析,研究小组确定其中5个不仅是球状星团,而且是已知的最古老的星团之一。"来自JWST的第一批图像发现遥远星系周围的古老球状星团是一个令人难以置信的时刻--这是以前的哈勃太空望远镜成像所无法做到的,"邓拉普天文学与天体物理学研究所的博士后研究员、该研究的共同主要作者KartheikG.Iyer说。"由于我们可以在一系列的波长范围内观察到这些'火花',我们可以对它们进行建模,并更好地了解它们的物理特性--比如它们的年龄有多大以及它们包含多少颗恒星。我们希望用JWST从如此遥远的距离观察球状星团的知识将刺激进一步的科学和搜索类似的物体。天文学家利用引力透镜来研究非常遥远和非常微弱的星系。资料来源:美国国家航空航天局,欧空局和L.Calçada银河系已知有大约150个球状星团,但是这些密集的星团究竟是如何形成的,以及何时形成的,人们并不十分清楚。天文学家们知道,球状星团的年龄可能非常大,但要测量它们的年龄却具有难以置信的挑战性。利用非常遥远的球状星团来确定遥远星系中第一批恒星的年龄,这在以前是没有的,只有在JWST上才有可能做到。直到现在,天文学家还不能用哈勃太空望远镜看到火花星系的周边紧凑物体。这种情况随着JWST分辨率和灵敏度的提高而改变,在韦伯的第一张深场图像中首次揭示了该星系周围的小点,它被放大了100倍,这是由于一种叫做引力透镜的效应--前景中的SMACS0723星系团扭曲了它背后的东西,很像一个巨大的放大镜。引力透镜产生了三个独立的"火花"图像,使天文学家能够更详细地研究这个星系。研究人员将JWST的近红外相机(NIRCam)的新数据与哈勃景象望远镜的档案数据相结合。NIRCam使用较长和较红的波长探测微弱的物体,以观察超过人眼甚至哈勃太空望远镜可见的东西。由于星系团的透镜作用,以及JWST的高分辨率,这两方面的放大作用使得观察紧凑物体成为可能。JWST上加拿大制造的近红外成像仪和无缝隙光谱仪(NIRISS)提供了独立的验证,即这些天体是古老的球状星团,因为研究人员没有观察到氧射线--这是正在积极形成恒星的年轻星团所发出的具有可测量光谱的发射物。NIRISS还帮助解开了"闪耀者"的三层光束图像的几何结构。JWST的加拿大制造的NIRISS仪器在帮助我们理解"闪耀者"及其球状星团的三个图像是如何连接的方面至关重要,"圣玛丽大学的教授MarcinSawicki说。他是加拿大天文学研究主席,也是这项研究的共同作者。 "看到对火花星系的几个球状星团进行了三次成像,使我们清楚地看到,它们是围绕着火花星系运行的,而不是简单地在它的前面偶然出现。"JWST将从2022年10月开始观测CANUCS场,利用其数据来检查五个大规模的星系团,研究人员期望在其周围发现更多这样的系统。未来的研究还将对星系团进行建模,以了解透镜效应,并执行更有力的分析来解释恒星形成的历史。...PC版:https://www.cnbeta.com.tw/articles/soft/1333883.htm手机版:https://m.cnbeta.com.tw/view/1333883.htm

封面图片

“圣诞树星系团”:韦伯望远镜和哈勃望远镜联合观测的炫目杰作

“圣诞树星系团”:韦伯望远镜和哈勃望远镜联合观测的炫目杰作MACS0416的全色视图,这是一个距离地球约43亿光年的星系团。这幅图像是通过将美国宇航局詹姆斯-韦伯太空望远镜的红外观测数据与美国宇航局哈勃太空望远镜的可见光数据相结合而生成的。由此产生的蓝色和红色棱镜全景图为星系的距离提供了线索。图片来源:NASA、ESA、CSA、STScI、JoseM.Diego(IFCA)、JordanC.J.D'Silva(UWA)、AntonM.Koekemoer(STScI)、JakeSummers(ASU)、RogierWindhorst(ASU)、HaojingYan(密苏里大学)包括德克萨斯农工大学天文学家王立凡博士在内的研究小组将这幅新图像命名为"圣诞树星系团",它结合了哈勃望远镜的可见光和韦伯望远镜探测到的红外光,展示了距离地球约43亿光年的星系团MACS0416。由于该星系团能够通过一种被称为引力透镜的现象放大来自更遥远背景星系的光线,因此研究人员能够识别出放大的超新星,甚至是放大倍数非常高的单个恒星。密苏里大学天文学家阎昊晶博士(HaojingYan)说:"我们称MACS0416为圣诞树星系团,既因为它色彩斑斓,也因为我们在其中发现了这些闪烁的灯光。"这篇论文由王立凡合著,已被接受发表在《天体物理学杂志》上。自2006年以来,王立凡一直是德克萨斯农机大学物理和天文学系以及乔治-P.和辛西娅-伍兹-米切尔基础物理和天文学研究所(GeorgeP.andCynthiaWoodsMitchellInstituteforFundamentalPhysicsandAstronomy)的成员,他是一个时域天文学团队的成员,该团队正在利用JWST发现宇宙中最早的超新星,其中最古老的记录可以追溯到宇宙诞生30多亿年的时候。这个国际合作小组被称为"用于重离子化和透镜科学的主要河外星系区域"(PEARLS),由亚利桑那州立大学天文学家罗吉尔-温德霍斯特(RogierWindhorst)博士领导。该团队的方法之一是利用韦伯望远镜无与伦比的观测能力来搜寻观测亮度随时间变化的天体,即所谓的瞬变天体。在JWST发射前发表的2017年白皮书中,王和他的合著者预测,这台望远镜将利用其强大的主成像仪--近红外相机(NIRCam)--在一次拍摄中发现几个这样的瞬变天体。他们引用MACS0416图像及其包含的14个瞬变天体作为佐证,并指出这些发现超出了研究小组的预测。"JWST正在宇宙中发现大量的瞬变天体,主要是超新星,"王说。"它不仅发现了超新星,还发现了遥远星系中被附近前景星系引力场放大的恒星。"这些发现是通过对星系团MACS0416方向的天空区域进行反复观测而获得的。北黄道极(NEP)是JWST能够全年持续指向并获取数据的区域,是未来获取时域观测数据的理想地点。前所未有的灵敏度使得一些超新星,比如白矮星爆炸产生的超新星能够在整个宇宙中被探测到,甚至可以追溯到宇宙刚刚开始形成第一批恒星的时代。"天文学有两个基本问题:第一批恒星是如何形成的,以及驱动宇宙膨胀的力量的性质是什么JWST能够发现的瞬变现象将为解决这些问题提供所需的数据。这些发现表明,JWST是研究宇宙黎明期微弱瞬变的最强大工具,宇宙黎明期是指宇宙从没有恒星的黑暗时代走到今天的时代。它观测到的超新星可以探究第一批恒星的诞生过程,以及宇宙膨胀到宇宙年龄不足10亿年的过程。"其中一些超新星很可能是低质量恒星死亡后演变成白矮星,并通过热核爆炸爆发出来的。通过透镜恒星可以研究遥远宇宙中的单个恒星。这些早期恒星也可能是质量非常大的恒星,它们通过所谓的成对生产不稳定过程产生极其明亮的瞬态。"我们预计,这些'常规可发现'的瞬变将在解决宇宙黑暗时代的结束和暗宇宙膨胀的物理学问题方面具有巨大的潜力,"王说。...PC版:https://www.cnbeta.com.tw/articles/soft/1399773.htm手机版:https://m.cnbeta.com.tw/view/1399773.htm

封面图片

詹姆斯·韦伯太空望远镜揭开了遥远星系的精致面纱

詹姆斯·韦伯太空望远镜揭开了遥远星系的精致面纱NIRCam是韦伯的主要成像器,覆盖0.6至5微米的红外波长范围。NIRCam探测到最早的恒星和正在形成过程中的星系、附近星系的恒星群以及银河系和柯伊伯带天体中的年轻恒星发出的光。PEARLS项目是最近发表在《天文学杂志》上的一项研究的主题,该研究团队包括亚利桑那州立大学地球和空间探索学院的RogierWindhorst教授、研究科学家RolfJansen、副研究科学家SethCohen、研究助理JakeSummers和研究生助理RosaliaO'Brien,同时还有许多其他研究者的贡献。照片来源:NASA、ESA、CSA、RolfA.Jansen(ASU)、JakeSummers(ASU)、RosaliaO'Brien(ASU)、RogierWindhorst(ASU)、AaronRobotham(UWA)、AntonM.Koekemoer(STSCI)、ChristopherWillmer(Arizona大学)和JWSTPEARLS团队;图片处理:RolfA.Jansen(ASU)和AlyssaPagan(STSCI)。对于研究人员来说,PEARLS计划的最早的星系图像显示了大规模星系团背景中物体的引力透镜量,使研究小组能够看到其中一些非常遥远的物体。在这些相对较深的领域之一(如上图所示),该团队通过令人惊叹的多色图像来识别具有活跃核的互动星系。Windhorst和他的团队的数据显示了巨大黑洞的证据,在其中心你可以看到吸积盘--落入黑洞的东西在星系中心非常明亮地闪耀。另外,很多星系的星星显示出来,就像你的汽车挡风玻璃上的水滴一样--就像你在星系间的空间里"行驶"。这个五彩缤纷的领域是从黄道面直线上升的,黄道面是地球和月球,以及所有其他行星围绕太阳运行的平面。Windhorst说:"二十多年来,我一直与一个大型的国际科学家团队合作,准备我们的韦伯科学计划。韦伯的图像确实是惊人的,真的超出了我最疯狂的梦想。它们使我们能够测量闪耀到非常微弱的红外极限的星系的数量密度以及它们产生的光的总量。这种光比在这些星系之间测量的非常暗的红外天空要暗得多"。研究小组在这些新图像中可以看到的第一件事是,许多在哈勃旁边或真正看不见的星系在韦伯拍摄的图像中是明亮的。这些星系距离太远,以至于恒星发出的光线被拉长了。研究小组用韦伯望远镜重点研究了北黄道极点时域--由于它在天空中的位置,很容易被看到。Windhorst和团队计划对其进行四次观测。第一次观测由两片重叠反射镜片完成,产生的图像显示了与月亮距离的10个萤火虫的亮度一样微弱的物体。韦伯的终极探测极限是一两只萤火虫。图像中可见的最微弱的红色物体是遥远的星系,可以追溯到大爆炸后的最初几亿年。...PC版:https://www.cnbeta.com.tw/articles/soft/1337221.htm手机版:https://m.cnbeta.com.tw/view/1337221.htm

封面图片

拜登揭示詹姆斯·韦伯太空望远镜首张星系团全彩照

拜登揭示詹姆斯·韦伯太空望远镜首张星系团全彩照(早报讯)美国总统拜登星期一(7月11日)暂时放下“压力山大”的政治事务,发布了美国国家航空航天局(NASA)的詹姆斯·韦伯太空望远镜传回的首张全彩色照片。路透社报道,詹姆斯·韦伯太空望远镜拍摄的第一张全彩色照片是一张星系团图像,让我们得以窥见有史以来最清晰的早期宇宙。由拜登和美国宇航局局长纳尔逊联合揭示的这张照片显示了一个拥有46亿年历史、名为SMACS0723的星系团。它的组合质量就像一个“引力透镜”,扭曲了空间,从而极大地放大了来自其背后更遥远星系的光。美国副总统哈里斯也出席此次活动。星系团(Galaxyclusters)是由星系组成的自引力束缚体系,通常尺度在数百万秒差距或数百万光年,包含了数百到数千个星系。NASA还计划于星期二在马里兰州戈达德太空飞行中心发布詹姆斯·韦伯太空望远镜拍摄的大量照片和光谱数据。詹姆斯·韦伯太空望远镜(JamesWebbSpaceTelescope)被认为是哈勃太空望远镜的继任者,它将成为迄今为止被送入轨道的最强大、最复杂的太空望远镜。它能利用红外线,让人们比以往任何时候都更深入地探索宇宙,不仅解开太阳系中的谜团,还能看向其他恒星周围的遥远世界,揭示最古老、最遥远星系的秘密,探索宇宙中的神秘结构和起源。詹姆斯·韦伯太空望远镜长13.2米,宽4.2米,大小与一辆大型牵引拖车差不多,“体重”6.5吨,耗资90亿美元(约126亿新元)。发布:2022年7月12日8:36AM

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人