研究人员率先在光子芯片上实现量子模拟

研究人员率先在光子芯片上实现量子模拟罗切斯特大学的研究人员开发的一个新系统使他们能够在一个模拟物理世界的合成空间中进行量子模拟,通过控制量子纠缠光子的频率,或颜色,随着时间的推移。资料来源:罗切斯特大学图片/MichaelOsadciw来自罗切斯特大学哈吉姆工程与应用科学学院的一个研究小组开发了一个新的芯片级光量子模拟系统,可以帮助使这种系统变得可行。由电子和计算机工程及光学教授林强领导的这个团队于6月22日在《自然-光子学》杂志上发表了他们的研究结果。林强的团队在一个模拟物理世界的合成空间中进行了模拟,通过控制量子纠缠光子的频率或颜色,随着时间的流逝。这种方法不同于传统的基于光子的计算方法,在这种方法中,光子的路径被控制,也大大减少了物理足迹和资源需求。"我们第一次能够生产出量子相关的合成晶体,"林说。"新方法大大扩展了合成空间的尺寸,使我们能够对几个量子尺度的现象进行模拟,如量子纠缠光子的随机行走。"研究人员介绍说,这个系统可以作为未来更复杂的模拟的基础。"虽然被模拟的系统已被充分理解,但这个原则性证明实验显示了这种新方法的力量,可以扩展到更复杂的模拟和计算任务,这是我们在未来非常兴奋的研究内容,"该研究的主要作者UsmanJavid'23博士(光学)说。林强小组的其他共同作者包括雷蒙德-洛佩斯-里奥斯、凌敬伟、奥斯汀-格拉夫和杰里米-斯塔法。该项目得到了美国国家科学基金会、国防威胁减少局的化学和生物防御联合科技办公室以及国防高级研究计划局的资助。...PC版:https://www.cnbeta.com.tw/articles/soft/1368509.htm手机版:https://m.cnbeta.com.tw/view/1368509.htm

相关推荐

封面图片

日前,中国科学技术大学潘建伟院士团队,利用“自底而上”的量子模拟方法,在国际上首次实现了光子的分数量子反常霍尔态,为高效开展更多

日前,中国科学技术大学潘建伟院士团队,利用“自底而上”的量子模拟方法,在国际上首次实现了光子的分数量子反常霍尔态,为高效开展更多、更新奇的量子物态研究提供了新路径,助力推进“第二次量子革命”。分数量子反常霍尔效应备受学术界关注,处于分数量子反常霍尔态的物质具有重要的观测研究价值。团队此次实现光子的分数量子反常霍尔态,为开展量子领域相关研究提供了优质的研究平台,无需极强外磁场等严苛的实验条件,且能实现对高集成度量子系统微观性质的全面测量和可控利用。(新华社)

封面图片

研究人通过可扩展量子点棋盘实现量子计算突破

研究人通过可扩展量子点棋盘实现量子计算突破承载16个量子点交叉阵列的量子芯片照片,与棋盘图案无缝集成。每个量子点就像棋盘上的棋子,都可以通过字母和数字坐标系进行唯一识别和控制。图片来源:MariekedeLorijnforQuTech。图片来源:MariekedeLorijnforQuTech量子点可用于容纳量子计算机的基础构件--量子比特。目前,每个量子位都需要自己的寻址线和专用控制电子设备。这非常不切实际,与当今的计算机技术形成了鲜明对比,在当今的计算机技术中,数十亿个晶体管只需几千条寻址线即可运行。代尔夫特理工大学(TUDelft)和应用科学研究组织(TNO)合作成立的QuTech公司的研究人员开发出了一种类似的量子点寻址方法。就像用字母(A到H)和数字(1到8)组合来寻址国际象棋棋子的位置一样,量子点也可以用水平线和垂直线组合来寻址。棋盘上的任何一点都可以通过字母和数字的特定组合来定义和寻址。他们的方法将最先进的技术提升到了一个新水平,实现了16量子点系统在4×4阵列中的运行。第一作者弗朗切斯科-博尔索伊解释说:"这种解决量子点问题的新方法有利于扩展到多个量子位。如果使用一根线控制和读出单个量子位,那么数百万个量子位就需要数百万根控制线。这种方法不能很好地扩展。但是,如果使用我们的棋盘式系统来控制量子位,那么数百万量子位只需"使用"数千条控制线即可寻址,其比例与计算机芯片非常相似。线路的减少为量子比特数量的扩展提供了前景,是量子计算机的一个突破,量子计算机最终将需要数百万量子比特。"提高数量和质量量子计算机不仅需要数百万量子比特,量子比特的质量也极为重要。最后一位作者兼首席研究员门诺-维尔德霍斯特(MennoVeldhorst)说:"就在最近,我们已经证明,这些类型的量子比特可以以99.992%的保真度运行。这是所有量子点系统中最高的,意味着每万次操作的平均误差不到1次。通过开发复杂的控制方法和使用锗作为宿主材料,这些进步成为可能,因为锗具有许多有利于量子运行的特性"。量子模拟的早期应用由于量子计算正处于早期发展阶段,因此我们有必要考虑如何以最快的速度实现实用的量子优势。换句话说:量子计算机何时才能比传统超级计算机"更好"?一个明显的优势是可以模拟量子物理,因为量子点的相互作用是基于量子力学原理的。事实证明,量子点系统可以非常有效地进行量子模拟。Veldhorst说:"在最近发表的另一篇文章中,我们展示了锗量子点阵列可用于量子模拟。这项工作是首次使用标准半导体制造材料进行的相干量子模拟。我们能够对共振价键进行初级模拟。虽然这项实验仅基于一个小型装置,但在大型系统上执行此类模拟可能会解决物理学中的长期问题。"未来工作Veldhorst总结道:"令人兴奋的是,我们在向更大系统扩展、提高性能以及获得量子计算和模拟机会方面迈出了几步。一个悬而未决的问题是,我们能将这些棋盘式电路做多大,如果存在限制,我们是否能利用量子链路将许多棋盘式电路互连起来,从而构建更大的电路。"...PC版:https://www.cnbeta.com.tw/articles/soft/1381635.htm手机版:https://m.cnbeta.com.tw/view/1381635.htm

封面图片

中国科大首次实现光子的分数量子反常霍尔态

中国科大首次实现光子的分数量子反常霍尔态成果示意图。16个非线性“光子盒”阵列囚禁的微波光子强相互作用形成分数量子反常霍尔态。霍尔效应是指当电流通过置于磁场中的材料时,电子受到洛伦兹力的作用,在材料内部产生垂直于电流和磁场方向的电压。反常霍尔效应是指无需外部磁场的情况下观测到相关效应。分数量子霍尔态展现出非平庸的多体纠缠,对其研究所衍生出的拓扑序、复合费米子等理论成果逐渐成为多体物理学的基本模型。与此同时,分数量子霍尔态可激发出局域的准粒子,这种准粒子具有奇异的分数统计和拓扑保护性质,有望成为拓扑量子计算的载体。传统的量子霍尔效应实验研究采用“自顶而下”的方式,即在特定材料的基础上,利用该材料已有的结构和性质实现制备量子霍尔态。通常情况下,需要极低温环境、极高的二维材料纯净度和极强的磁场,对实验要求较为苛刻。此外,传统“自顶而下”的方法难以对系统微观量子态进行单点位独立地操控和测量,一定程度上限制了其在量子信息科学中的应用。人工搭建的量子系统结构清晰,灵活可控,是一种“自底而上”研究复杂量子物态的新范式。其无需外磁场,通过变换耦合形式即可构造出等效人工规范场;通过对系统进行高精度可寻址的操控,可实现对高集成度量子系统微观性质的全面测量,并加以进一步可控的利用。这类技术被称为量子模拟,是“第二次量子革命”的重要内容,有望在近期应用于模拟经典计算困难的量子系统并达到“量子计算优越性”。据介绍,此前,国际上已经基于其开展了一些合成拓扑物态、研究拓扑性质的量子模拟工作。然而,由于以往系统中耦合形式和非线性强度的限制,人们一直未能在二维晶格中为光子构建人工规范场。为解决这一重大挑战,研究团队在国际上自主研发并命名了一种新型超导量子比特Plasmonium,打破了目前主流的Transmon(传输子型)量子比特相干性与非简谐性之间的制约,用更高的非简谐性提供了光子间更强的排斥作用。进一步,团队通过交流耦合的方式构造出作用于光子的等效磁场,使光子绕晶格的流动可积累Berry(贝里)相位,解决了实现光子分数量子反常霍尔效应的两个关键难题。同时,这样的人造系统具有可寻址、单点位独立控制和读取,以及可编程性强的优势,为实验观测和操纵提供了新的手段。在该项工作中,研究人员观测到了分数量子霍尔态独有的拓扑关联性质,验证了该系统的分数霍尔电导。同时,他们通过引入局域势场的方法,跟踪了准粒子的产生过程,证实了准粒子的不可压缩性质。《科学》杂志审稿人高度评价这一工作,认为这一工作“是利用相互作用光子进行量子模拟的重大进展”“一种新颖的局域单点控制和自底而上的途径”。诺贝尔物理学奖得主FrankWilczek评价,这种“自底而上”、用人造原子构建哈密顿量的途径是一个“非常有前途的想法”,这是一个令人印象深刻的实验,为基于任意子的量子信息处理迈出了重要一步。沃尔夫奖获得者PeterZoller评价,“这在科学和技术上都是一项杰出的成就”“实现这样的目标是多年来全球顶级实验室竞争的量子模拟的圣杯之一”。...PC版:https://www.cnbeta.com.tw/articles/soft/1430083.htm手机版:https://m.cnbeta.com.tw/view/1430083.htm

封面图片

全数字化量子模拟出手 在量子芯片上“搭”出时间晶体

全数字化量子模拟出手在量子芯片上“搭”出时间晶体此次,浙大研究团队首次尝试了“全数字化量子模拟”的实验方案。该方案在26量子比特的超导量子芯片上,通过操作高达240层深度的量子门,实现合作者的构思。相比于“类比量子模拟”,“全数字化量子模拟”的通用性更强,具有更高的编程灵活度和量子门精度,能够执行更多种类的量子算法。食盐、矿石等人们日常熟悉的一般晶体,构成它们的原子在空间排列上呈现周期性变化的规律。而时间晶体,也就是一种四维以上的空间晶体,其特征在时间上也呈现出周期性变化的规律。近日,《自然》杂志发表了由浙江大学(以下简称浙大)物理学院王震、王浩华研究组与清华大学交叉信息研究院邓东灵研究组等合作的研究成果。科研人员在超导量子芯片上首次采用全数字化量子模拟方式,实现了“拓扑时间晶体”这种全新的物质状态。在研究中,研究人员成功观测到了“拓扑时间晶体”的边缘因拓扑保护而呈现出离散时间晶体的行为,即浮球(Floquet)对称保护拓扑相。在超导量子芯片上使用数字化量子模拟的方法,有望被用于探索更多的物理学前沿问题。在寻找时间晶体过程中另辟蹊径联合团队绘制的数字量子模拟拓扑时间晶体概念图显示,超导量子芯片内部就像一个多姿多彩的量子世界。科学家们在这个量子世界中构建“拓扑时间晶体”。“拓扑时间晶体”规则排布的晶体代表保护拓扑的对称性,旋转的指针代表时间维度,中间不断流出的数字则代表数字模拟……在理论方面,关于时间晶体,有科学家曾提出离散时间晶体的概念,并提出了在一类非平衡态系统——量子多体局域化系统中创造时间晶体的理论模型;而在实验方面,近年来,有研究团队分别在离子阱平台、金刚石色心平台和核磁共振量子平台等多个平台上实现了“离散时间晶体”。时间晶体的特殊之处在于,它的周期性重复是自然且稳定的“基态”,即物质处于能量最低时的状态。浙大物理学院研究员王震解释说:“时间晶体并不需要像钟表运行那样消耗能量,其‘天性’类似于频闪或者呼吸,是周期性变化的。”两年前,清华大学教授邓东灵开始构思一种新的时间晶体,即尝试将拓扑的概念引入时间晶体。通过与浙大超导量子计算团队合作,他尝试在超导量子芯片上创造这类全新的时间晶体。“常规的时间晶体已经在一些实验平台中实现,而我们想尝试别人没有做过的。”王震说。联合团队基于浙大杭州国际科创中心量子计算创新工坊发布的“天目1号”超导量子芯片开展实验。该芯片依托于浙江大学微纳加工中心制作,其平均比特相干时间突破100微秒,达到了国际先进水平。该芯片采用较易扩展的近邻连通架构,具备更高的编程灵活度,以便执行更多种类的量子算法,具有更加广阔的研究前景。打磨出“全数字化模拟”利器近年来,在解决经典计算机无法胜任的复杂问题方面,量子计算显示出越来越强大的能力。科学家们认为,为了研究出适用范围广阔的“通用型量子计...PC版:https://www.cnbeta.com/articles/soft/1304907.htm手机版:https://m.cnbeta.com/view/1304907.htm

封面图片

研究人员结合诺贝尔奖获奖理念 提高量子通信的效率和安全性

研究人员结合诺贝尔奖获奖理念提高量子通信的效率和安全性纠缠光子是一种即使相隔很远也能保持连接的光粒子,2022年诺贝尔物理学奖对这方面的实验给予了肯定。IQC研究团队将纠缠与量子点(一种获得2023年诺贝尔化学奖的技术)相结合,旨在优化创建纠缠光子的过程,纠缠光子具有广泛的应用,包括安全通信。提高量子效率和纠缠度IQC和滑铁卢电气与计算机工程系教授MichaelReimer博士说:"量子密钥分发或量子中继器等令人兴奋的应用需要高度纠缠和高效率的结合,这些应用被设想用于将安全量子通信的距离扩展到全球范围或连接远程量子计算机。以前的实验只能测量到近乎完美的纠缠或高效率,但我们是第一个用量子点同时达到这两个要求的人。"纠缠光子源--嵌入半导体纳米线的铟基量子点(左),以及如何从纳米线中有效提取纠缠光子的可视化图。资料来源:滑铁卢大学通过将半导体量子点嵌入纳米线,研究人员创造出了一种能产生近乎完美的纠缠光子的光源,其效率是以前工作的65倍。这种新光源是与位于渥太华的加拿大国家研究理事会合作开发的,可以用激光激发,根据指令产生纠缠对。研究人员随后使用荷兰SingleQuantum公司提供的高分辨率单光子探测器来提高纠缠程度。历史上,量子点系统一直存在一个名为"精细结构分裂"的问题,它会导致纠缠态随时间发生振荡。这意味着使用慢速检测系统进行测量将无法测量纠缠状态,IQC和滑铁卢电气与计算机工程系博士生MatteoPennacchietti说。"我们将量子点与非常快速和精确的检测系统相结合,克服了这一难题。我们基本上可以在振荡过程中的每一点上获取纠缠态的时间戳,这就是我们拥有完美纠缠的地方。"为了展示未来的通信应用,Reimer和Pennacchietti与NorbertLütkenhaus博士和ThomasJennewein博士(两人均为IQC教师和滑铁卢物理与天文学系教授)及其团队合作。利用新的量子点纠缠源,研究人员模拟了一种称为量子密钥分发的安全通信方法,证明量子点源在未来的安全量子通信中大有可为。编译自:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1424968.htm手机版:https://m.cnbeta.com.tw/view/1424968.htm

封面图片

国际首次!我国科学家实现光子的分数量子反常霍尔态

国际首次!我国科学家实现光子的分数量子反常霍尔态据新华社,日前,中国科学技术大学潘建伟院士团队,利用“自底而上”的量子模拟方法,在国际上首次实现了光子的分数量子反常霍尔态,为高效开展更多、更新奇的量子物态研究提供了新路径,助力推进“第二次量子革命”。分数量子反常霍尔效应备受学术界关注,处于分数量子反常霍尔态的物质具有重要的观测研究价值。团队此次实现光子的分数量子反常霍尔态,为开展量子领域相关研究提供了优质的研究平台,无需极强外磁场等严苛的实验条件,且能实现对高集成度量子系统微观性质的全面测量和可控利用。诺贝尔物理学奖获得者弗兰克・维尔切克评价,这项研究向基于任意子的量子信息处理迈出重要一步。

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人