最早的“宇宙网”被发现:宇宙大爆炸后仅8.3亿年

最早的“宇宙网”被发现:宇宙大爆炸后仅8.3亿年利用NASA空前强大的詹姆斯·韦伯空间望远镜,天文学家发现了迄今为止最早的宇宙网,来自宇宙大爆炸后仅仅大约8.3亿年,由10个星系构成。天文学家们认为,这条看不见的星系链,将演变成一个巨大的星系团,就像著名的后发星系团一样。这不但可以帮助我们更好地理解“宇宙网”早期是如何形成的,甚至可以从中探寻黑洞形成过程的更多秘密,以及更多关于宇宙起源和发展的答案。当然,我们看到的其实是大概130亿年前的景象,它早就演变成不知道什么样子了。...PC版:https://www.cnbeta.com.tw/articles/soft/1369619.htm手机版:https://m.cnbeta.com.tw/view/1369619.htm

相关推荐

封面图片

最新研究发现远古宇宙大爆炸后33个星系的“少年”特征

最新研究发现远古宇宙大爆炸后33个星系的“少年”特征研究来自远古宇宙的"少年星系"可以让科学家了解这些庞大的恒星系统是如何成熟和演化的。根据卡内基大学的格温-鲁迪(GwenRudie)和西北大学的艾莉森-斯特罗姆(AllisonStrom)领导的新工作,在宇宙大爆炸后20亿至30亿年刚刚形成的星系异常炽热,并发出来自镍等令人惊讶元素的光芒。研究来自远古宇宙的"少年星系"可以让科学家了解这些庞大的恒星系统是如何成熟和演化的。他们的研究结果发表在《天体物理学杂志通讯》(TheAstrophysicalJournalLetters)上,是CECILIA(利用星际极光中的电离线对化学演化进行约束)调查的一部分。去年七月,他们将美国国家航空航天局的詹姆斯-韦伯太空望远镜(JWST)对准了33个经过特别挑选的古老星系,这些星系的光线经过100多亿年的传播才到达我们这里,他们用新望远镜凝视了这些星系一天多的时间,提供了迄今为止捕捉到的关于这些早期星系的最详细的视图。JWST望远镜拍摄的被称为"ElGordo"的星系团图像,它是"宇宙少年"的一个例子。图片来源:NASA、ESA、CSA、JoseM.Diego(IFCA)、BrendaFrye(亚利桑那大学)、PatrickKamieneski(亚利桑那大学)、TimCarleton(亚利桑那大学)、RogierWindhorst(亚利桑那大学)、AlyssaPagan(STScI)、JakeSummers(亚利桑那大学)、JordanC.J.D'Silva(亚利桑那大学)。J.D'Silva(西澳大学)、AntonM.Koekemoer(STScI)、AaronRobotham(西澳大学)、RogierWindhorst(美国空间大学)恒星形成与银河演化在宇宙年轻的时候,许多星系,包括本次研究选择的33个星系,都经历过一段密集的恒星形成期。如今,一些星系,比如我们的银河系,仍然在形成新的恒星,尽管速度没有那么快。其他星系则完全停止了恒星的形成。这项新工作可以帮助天文学家了解这些不同轨迹背后的原因。第一作者艾莉森-斯特罗姆(AllisonStrom)说:"我们试图了解星系在140亿年的宇宙历史中是如何成长和变化的。利用JWST,我们的计划以青少年星系为目标,当时它们正处于成长和变化的混乱时期。青少年的经历往往决定了他们成年后的轨迹。对于星系来说也是一样。"美国宇航局詹姆斯-韦伯太空望远镜的观测对这项研究至关重要。资料来源:美国国家航空航天局光谱分析和元素发现CECILIA团队研究了这些遥远星系的光谱,将它们的光分成不同的波长,就像三棱镜将阳光散射成彩虹的颜色一样。以这种方式观察光线有助于天文学家测量宇宙源的温度和化学成分。鲁迪解释说:"我们将所有33个星系的光谱平均起来,创造出迄今为止所见过的最深的遥远星系光谱--这需要600个小时的望远镜时间才能复制出来。这使我们能够创建一个类似地图集的东西,为JWST未来观测非常遥远的天体提供参考。"利用光谱,研究人员能够识别出八种不同的元素:氢、氦、氮、氧、硅、硫、氩和镍。这些元素存在于这些星系中并不令人惊讶,但我们测量它们的光的能力是前所未有的,显示了JWST的强大功能。所有比氢和氦重的元素都是在恒星内部形成的。当恒星在超新星等剧烈事件中爆炸时,它们会将这些元素喷射到宇宙环境中,并融入下一代恒星。因此,通过揭示这些早期星系中某些元素的存在,天文学家可以了解恒星形成在演化过程中的变化。CECILIA团队对镍元素的存在感到惊讶,因为镍元素特别难以观测到。"我做梦也没想到我们会看到镍,"斯特罗姆说。"即使在附近的星系中,人们也没有观测到这种现象。星系中必须有足够多的元素存在,而且要有合适的条件才能观测到。从来没有人说过要观测镍。元素必须在气体中发光,我们才能看到它们。因此,为了让我们看到镍,星系中的恒星可能有一些独特之处。"富兰克林与马歇尔学院的合著者RyanTrainor补充说:"JWST仍然是一个非常新的天文台。全世界的天文学家仍在努力找出分析我们从望远镜中获得的数据的最佳方法"。温度发现和遗产另一个惊喜:少年星系的温度非常高。通过研究光谱,物理学家可以计算出星系的温度。星系最热的地方可以达到9700多摄氏度,即华氏17492度,而少年星系的温度却高达13350多摄氏度,即华氏24062度。鲁迪说:"我们预计这些早期星系的化学成分与我们的银河系和今天环绕我们的星系有非常非常大的不同。但JWST所揭示的情况还是让我们大吃一惊。"该项目是为了纪念塞西莉亚-佩恩-加波什金(CeciliaPayne-Gaposchkin)而命名的。她的发现颠覆了科学界对太阳成分的认识,在她的突破性工作最终得到认可之前,她面临了多年不公正的批评。"以塞西莉亚-佩恩的名字命名我们的JWST勘测是为了向她对恒星化学组成的开创性研究表示敬意。艾莉森和我认识到,我们自己揭示这些早期星系化学成分的工作就是建立在她的遗产之上的。"鲁迪说。CECILIA是卡内基和卡内基附属天文学家领导的六个JWST初始项目中的第一个,这些项目被选中利用这台不可思议的太空望远镜进行观测。今年早些时候,又有四个由卡内基领导的项目入选第二轮JWST时间分配。...PC版:https://www.cnbeta.com.tw/articles/soft/1401605.htm手机版:https://m.cnbeta.com.tw/view/1401605.htm

封面图片

韦伯太空望远镜发现了宇宙中最早的星系

韦伯太空望远镜发现了宇宙中最早的星系早先来自韦伯的数据提供了这种婴儿星系的候选者。现在,这些目标已经通过获得光谱观测得到了确认,揭示了来自这些令人难以置信的微弱星系的光的指纹中的特征和独特的模式。"证明这些星系确实是居住在早期宇宙中这是至关重要的。"来自英国赫特福德大学的天文学家和共同作者艾玛-柯蒂斯-莱克说:"较近的星系很有可能伪装成非常遥远的星系。看到光谱后发现,正如我们所希望的那样,确认这些星系处于我们视野的真正边缘,有些星系比哈勃能看到的还要远!。这是该任务的一个巨大的令人兴奋的成就"。这些观测结果是科学家们合作的结果,他们领导开发了韦伯号上的两个仪器,即近红外相机(NIRCam)和近红外光谱仪(NIRSpec)。对最微弱和最早期的星系的调查是这些仪器概念背后的主要动机。2015年,这些仪器团队共同提出了JWST高级深外星系调查(JADES),这是一个雄心勃勃的计划,在两年内分配给望远镜一个多月的时间,旨在提供一个深度和细节都前所未有的早期宇宙的视图。JADES是一个由10个国家的80多位天文学家组成的国际合作项目。"这些结果是NIRCam和NIRSpec团队共同执行这项观测计划的结果,"共同作者、图森亚利桑那大学的NIRCam首席调查员MarciaRieke说。JADES的第一轮观测集中在哈勃太空望远镜的超深场内和周围地区(见下图)。20多年来,这一小片天空一直是几乎所有大型望远镜的目标,建立了一个横跨整个电磁波谱的异常敏感的数据集。现在,韦伯正在增加其独特的视角,提供迄今为止获得的最微弱和最清晰的图像。JADES计划从NIRCam开始,利用超过10天的任务时间,以九种不同的红外颜色观察该区域,并产生了精美的天空图像。该区域比哈勃太空望远镜制作的最深的红外图像大15倍,但在这些波长下却更加深邃和清晰。当从一英里外观看时,该图像仅有人类的大小。然而,它充斥着近10万个星系,每个星系都被捕捉到了它们历史上的某个时刻,距今已有数十亿年。"我们第一次发现了大爆炸后仅3.5亿年的星系,而且我们可以对它们奇妙的距离有绝对的信心,"来自加利福尼亚大学圣克鲁兹分校的共同作者、NIRCam科学小组成员布兰特-罗伯逊(BrantRobertson)分享道。"在如此令人惊叹的美丽图像中发现这些早期星系是一种特殊的体验。"从这些图像中,早期宇宙中的星系可以通过其多波长的颜色这一特征来区分。随着宇宙的扩张,光的波长被拉长,而来自这些最年轻的星系的光被拉长了14倍之多。天文学家们寻找那些在红外线中可见的微弱星系,但它们的光在一个关键波长处突然中断。每个星系光谱中的截止点的位置会因宇宙的膨胀而发生偏移。JADES团队搜索了韦伯的图像,寻找这些独特的候选者。然后,他们使用NIRSpec仪器,在一个跨越三天的单一观测期,总共收集了28个小时的数据。该小组收集了来自250个微弱星系的光线,使天文学家能够研究每个星系中的原子在光谱上印出的图案。这产生了对每个星系红移的精确测量,并揭示了这些星系中气体和恒星的特性。"来自意大利ScuolaNormaleSuperiore的天文学家和共同作者StefanoCarniani说:"这些是迄今为止最微弱的红外光谱。"它们揭示了我们希望看到的东西:对星系间氢的散射所导致的光的截止波长的精确测量。"所研究的四个星系特别特别,因为它们被发现处于一个前所未有的早期时代。研究结果提供了光谱学确认,这四个星系位于红移10以上,包括两个位于红移13。这相当于宇宙大约有3.3亿年历史的时候,为寻找遥远的星系设定了一个新的前沿阵地。这些星系由于离我们很远,所以非常暗淡。天文学家们现在可以探索它们的特性,这要归功于韦伯的精湛灵敏度。来自英国剑桥大学的天文学家和共同作者SandroTacchella解释说:"如果不了解星系发展的初始阶段,就很难了解它们。就像人类一样,后来发生的很多事情都取决于这些早期恒星的影响。关于星系的许多问题一直在等待韦伯为我们带来的变革性机会,很高兴能够在揭示这个谜团中发挥作用。"JADES将在2023年继续对另一领域进行详细研究,这个领域以标志性的哈勃深场为中心(见上图),然后回到超深场进行另一轮的深度成像和光谱分析。该领域还有许多候选者等待光谱调查,研究设施的管理方已经批准了数百小时的额外时间。...PC版:https://www.cnbeta.com.tw/articles/soft/1334959.htm手机版:https://m.cnbeta.com.tw/view/1334959.htm

封面图片

宇宙利维坦:哈勃望远镜揭示了一个异常巨大的星系团

宇宙利维坦:哈勃望远镜揭示了一个异常巨大的星系团在该星系团周围可以看到许多其他的星系,还有一些带有明显衍射尖峰的前景恒星散布在整个图像中。这个特殊的星系团被称为eMACSJ1823.1+7822,位于近90亿光年外的天龙座。它是哈勃探索的五个超大质量的星系团之一,希望能够测量这些引力透镜的强度,并对星系团中暗物质的分布提供见解。像eMACSJ1823.1+7822这样的强引力透镜可以帮助天文学家研究遥远的星系,因为它就像巨大的天然望远镜,可以放大那些本来太暗或太远的物体。这张多波长的图像是由八个不同的滤光片和两个不同的仪器提供的数据:哈勃的高级观测相机(ACS)和宽场相机3(WFC3)。这两台仪器都有能力利用滤光片观察电磁波谱中的一小片天文物体,这使得天文学家能够在精确选择的波长上对物体进行成像。结合不同波长的观察,天文学家可以对天体的结构、组成和行为进行更全面的了解,而不是仅仅通过可见光来揭示。...PC版:https://www.cnbeta.com.tw/articles/soft/1358627.htm手机版:https://m.cnbeta.com.tw/view/1358627.htm

封面图片

天文学家在极早期宇宙极端狂暴的星系中发现快速增长的黑洞

天文学家在极早期宇宙极端狂暴的星系中发现快速增长的黑洞来自德克萨斯大学和亚利桑那大学的天文学家在非常早期的宇宙中已知的最极端的星系之一发现了一个快速增长的黑洞。该星系和其中心的黑洞的发现为最早的超大质量黑洞的形成提供了新的线索。这项新工作发表在《皇家天文学会月报》上。PC版:https://www.cnbeta.com.tw/articles/soft/1346759.htm手机版:https://m.cnbeta.com.tw/view/1346759.htm

封面图片

天文学家利用韦伯望远镜识别宇宙网最早的线缕

天文学家利用韦伯望远镜识别宇宙网最早的线缕研究小组认为,这个丝状结构最终将演变成一个巨大的星系团,就像"附近"宇宙中著名的红缨星系团一样。研究结果发表在《天体物理学杂志通讯》(TheAstrophysicalJournalLetters)上的两篇论文中。"这是人们发现的最早的与遥远类星体相关的丝状结构之一,"亚利桑那大学斯图尔特天文台助理研究教授、第一篇论文的第一作者王飞说。王还说,这是第一次在宇宙中如此早期的时间观测到这种结构,而且是三维细节观测。这幅由韦伯近红外相机(Webb'sNIRCam)拍摄的深层星系景象显示了10个遥远星系的排列,这些星系由八个白色圆圈标记,呈对角线状。(这个长达300万光年的丝状结构由一个非常遥远、非常明亮的类星体支撑着--类星体的核心是一个活跃的超大质量黑洞。这颗类星体名为J0305-3150,位于图像右侧三个圆圈的中间。它的亮度超过了它的宿主星系。这10个被标记的星系在宇宙大爆炸后仅存在了8.3亿年。研究小组相信,这个丝状星系最终会演化成一个巨大的星系团。图片来源:NASA、ESA、CSA、FeigeWang(亚利桑那大学),图像处理:约瑟夫-德帕斯卡尔(STScI)星系并不是随意散布在宇宙中的。它们不仅聚集成星团和星块,还形成了巨大的相互连接的丝状结构,中间被巨大的荒芜空洞隔开。这张"宇宙网"一开始很脆弱,随着时间的推移,引力将物质聚集在一起,变得越来越清晰。星系嵌在暗物质的巨大"海洋"中,暗物质和常规物质聚集在局部区域,密度高于周围环境。斯图瓦德大学天文学教授范晓晖(XiaohuiFan)解释说,星系就像海洋中的波峰一样,骑在被称为"细丝"的连续暗物质串上。新发现的暗物质丝标志着在宇宙年龄仅为现在的6%时首次观测到这种结构,原本他们预计会发现一些东西,但没想到会是这么长、这么明显的细结构。这一发现是ASPIRE项目的一部分,该项目是一项大型国际合作项目,由亚利桑那大学的研究人员领导,王是该项目的主要研究人员。ASPIRE是ASPectroscopicsurveyofbiasedhalosIntheReionizationEra的缩写,其主要目标是研究最早黑洞的宇宙环境。该计划将观测25个存在于宇宙大爆炸后最初10亿年内的类星体,这一时期被称为"宇宙再电离时代"。130多亿年前,在重离子时代,宇宙是一个非常不同的地方。星系之间的气体在很大程度上对高能光不透明,因此很难观测到年轻的星系。是什么让宇宙变得完全电离或透明,最终导致在今天的大部分宇宙中探测到"清晰"的条件呢?詹姆斯-韦伯太空望远镜(JamesWebbSpaceTelescope)将深入太空,收集更多关于重离子时代存在的天体的信息,帮助我们了解宇宙历史上的这一重大转变。图片来源:NASA、ESA和J.Kang(STScI)"团队成员、加州大学圣巴巴拉分校的约瑟夫-亨纳维(JosephHennawi)说:"过去二十年的宇宙学研究让我们对宇宙网的形成和演化有了深入的了解。"ASPIRE旨在了解如何将最早的大质量黑洞的出现嵌入到我们当前的宇宙结构形成故事中"。研究的另一部分是调查年轻宇宙中八颗类星体的特性。研究小组证实,这些类星体的中心黑洞在宇宙大爆炸后不到10亿年就已存在,其质量从6亿倍到20亿倍太阳质量不等。天文学家仍在继续寻找证据,以解释这些黑洞为何能如此迅速地变大。要在如此短的时间内形成这些超大质量黑洞,必须满足两个标准。王解释说:"首先,你需要从一个巨大的'种子'黑洞开始生长。第二,即使这颗种子一开始的质量相当于一千个太阳,它也需要在相对较短的时间内以最大可能的速度吸积一百万倍以上的物质,因为我们的观测是在它还非常年轻的时候捕捉到它的。"类星体--如图所示,是宇宙中最亮的天体。类星体的超大质量黑洞在吞噬周围环境的质量时释放出的能量被广泛认为是限制大质量星系生长的主要驱动力。资料来源:STScI"这些史无前例的观测为我们提供了关于黑洞如何形成的重要线索。我们了解到,这些黑洞位于大质量年轻星系中,这些星系为黑洞的生长提供了燃料库,"斯图瓦德大学助理研究教授杨金义说,他领导着ASPIRE对黑洞的研究,也是第二篇论文的第一作者。詹姆斯-韦伯太空望远镜还提供了迄今为止最好的证据,证明早期超大质量黑洞如何潜在地调节其星系中恒星的形成。超大质量黑洞在吸积物质的同时,也会产生巨大的物质外流。这些"风"的范围可以远远超出黑洞本身,达到银河系的规模,并对恒星的形成产生重大影响。恒星是在气体和尘埃坍缩成密度越来越大的云团时形成的,这就要求气体非常寒冷。杨解释说,来自黑洞的强风释放出大量能量,会对这一过程造成破坏,从而抑制宿主星系中恒星的形成。"这种风已经在附近的宇宙中观测到过,但在宇宙的早期,即重子化纪元,还从未被直接观测到过。风的规模与类星体的结构有关。在韦伯望远镜的观测中,我们看到这种风延伸至整个星系,影响着星系的演化。...PC版:https://www.cnbeta.com.tw/articles/soft/1372027.htm手机版:https://m.cnbeta.com.tw/view/1372027.htm

封面图片

天文学家发现在早期宇宙中形成的星系比以前认为的要多

天文学家发现在早期宇宙中形成的星系比以前认为的要多Yan说:"在宇宙的早期部分发现如此大量的星系表明我们可能需要修改我们以前对星系形成的理解。我们的发现给了我们第一个迹象,即大量的星系可能在宇宙中形成的时间比以前认为的要早得多。"一对来自星系团SMACS0723-27及其周边地区的彩色合成图像,由美国宇航局的詹姆斯-韦伯太空望远镜通过其早期释放观测(ERO)拍摄。由密苏里大学的HaojingYan领导的一个天文学家小组利用这些图像的数据来确定他们研究中感兴趣的物体。这些包括可能是宇宙中最早的已知星系的星系--大约在大爆炸后2-4亿年。每个感兴趣的物体的位置由彩色图像上三个不同颜色的圆圈之一表示--蓝色、绿色或红色。这些颜色与发现它们的红移范围相对应--高(蓝色)、非常高(绿色)或极高(红色)。资料来源:美国航空航天局、欧洲航天局、加拿大航天局和太空望远镜科学研究所。在这项研究中,天文学家们在"非常高的红移"中寻找潜在的星系。Yan说,天文学中的红移概念使天文学家能够通过观察宇宙中遥远物体--如星系--发出的光波的颜色变化来测量它们的距离。HaojingYan资料来源:密苏里大学"如果一个发光源向我们移动,光线就会被'挤压',而较短的波长就表现为蓝光,或蓝移,"Yan说。"但是,如果这个[光]源正在远离我们,它产生的光正在被'拉伸',并变为更长的波长,由红光表示,或红移。"Yan说,埃德温-哈勃在20世纪20年代末发现我们的宇宙在不断扩大,这是理解天文学中如何使用红移的关键。"哈勃证实了我们银河系以外的星系正在远离我们,而且它们越远,它们远离的速度就越快,这通过距离的概念与红移有关--一个物体的红移越高,比如一个星系,它离我们就越远。"因此,在非常高的红移上寻找星系给了天文学家一种构建宇宙早期历史的方法。"光速是有限的,所以光经过一段距离到达我们需要时间,例如,当我们看太阳的时候,我们不是在看它现在的样子,而是看它在大约8分钟前的样子。这是因为太阳的辐射需要这么长的时间才能到达我们这里。因此,当我们在看非常遥远的星系时,我们是在看它们很久以前的图像。"利用这一概念,Yan的团队分析了JWST捕获的红外光,以识别星系。"一个星系的红移越高,光线到达我们这里的时间就越长,所以更高的红移对应着更早的宇宙观,因此,通过观察高红移的星系,我们得到了宇宙在很久以前的样子的更早的快照。"JWST对这一发现至关重要,因为像星系这样位于高红移,也就是11及以上的空间物体只能通过红外光探测。这超出了美国宇航局的哈勃太空望远镜所能探测到的范围,因为哈勃望远镜只能看到从紫外线到近红外的光线。"JWST,最强大的红外望远镜有足够的灵敏度和分辨率来完成这项工作,到这些首批JWST数据集被发布[在2022年7月中旬],大多数天文学家认为宇宙中应该很少有超过红移11的星系。至少,我们的结果挑战了这种观点。我相信这一发现只是冰山一角,因为我们使用的数据只集中在宇宙的一个非常小的区域。在这之后,我预计其他的天文学家团队将在浩瀚的太空中的其他地方发现类似的结果,因为JWST继续为我们提供了一个关于我们宇宙最深处的新视角。"...PC版:https://www.cnbeta.com.tw/articles/soft/1341871.htm手机版:https://m.cnbeta.com.tw/view/1341871.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人