人工肌肉首次弯曲:铁电聚合物在机器人领域的创新

人工肌肉首次弯曲:铁电聚合物在机器人领域的创新图为由焦耳加热驱动的铁电聚合物的驱动力机械应变,即材料在受力时如何改变形状,是执行器的一个重要属性,执行器是指在施加电能等外力时将改变或变形的任何材料。传统上,这些执行器材料是刚性的,但软性执行器,如铁电聚合物,显示出更高的灵活性和环境适应性。研究表明,铁电聚合物纳米复合材料有可能克服传统压电聚合物复合材料的局限性,为开发具有更强应变性能和机械能量密度的软执行器提供了一条有希望的途径。由于软执行器的强度、功率和灵活性,机器人研究人员对其特别感兴趣。宾夕法尼亚州立大学材料科学与工程系教授、最近发表在《自然-材料》杂志上的研究报告的共同通讯作者QingWang说:"我们现在有可能拥有一种软体机器人,我们称之为人工肌肉。这将使我们能够拥有软性物质,除了大的应变外,还能承载高负荷。因此,这种材料就会更多地模仿人类肌肉,一种接近人类肌肉的材料。"然而,在这些材料能够实现其承诺之前,还有一些障碍需要克服,研究报告中提出了解决这些障碍的潜在方案。铁电体是一类材料,当施加外部电荷,材料中的正负电荷走向不同的极点时,会表现出自发的电极化。这些材料在相变过程中的应变,在这种情况下,将电能转换为机械能,可以完全改变其形状等属性,使其成为有用的执行器。铁电致动器的一个常见应用是喷墨打印机,电荷改变致动器的形状,以精确控制在纸上沉积墨水的微小喷嘴,形成文字和图像。虽然许多铁电材料是陶瓷,但它们也可以是聚合物,这是一类由许多类似单元粘合在一起的天然和合成材料。例如,DNA是一种聚合物,尼龙也是如此。铁电聚合物的一个优点是它们表现出驱动所需的大量电场诱导的应变。这种应变远远高于其他用于执行器的铁电材料所产生的应变,如陶瓷。铁电材料的这一特性,以及高度的灵活性、与其他铁电材料相比成本的降低和低重量,对日益增长的软体机器人领域的研究人员有着极大的兴趣,软体机器人是指具有柔性部件和电子器件的机器人设计。Wang说:"在这项研究中,我们为软材料驱动领域的两个主要挑战提出了解决方案。一个是如何提高软材料的力。我们知道作为聚合物的软驱动材料具有最大的应变能力,但与压电陶瓷相比,它们产生的力要小得多。"第二个挑战是,铁电聚合物致动器通常需要一个非常高的驱动场,这是一个在系统中施加变化的力,例如致动器的形状变化。在这种情况下,高驱动场对于在聚合物中产生成为致动器所需的铁电反应的形状变化是必要的。为改善铁电聚合物的性能而提出的解决方案是开发一种渗流式铁电聚合物纳米复合材料--一种附着在聚合物上的微观贴纸。通过将纳米颗粒纳入一种聚合物--聚偏二氟乙烯,研究人员在聚合物内创建了一个相互连接的极点网络。这个网络使铁电相变能够在比通常所需的低得多的电场下被诱导出来。这是通过使用焦耳加热的电热方法实现的,当电流通过导体时,会产生热量。使用焦耳加热来诱导纳米复合聚合物的相变,结果只需要不到铁电相变通常需要的电场强度的10%。通常情况下,铁电材料中的这种应变和力是相互关联的,呈反比关系。现在研究人员可以把它们整合到一种材料中,利用焦耳加热来驱动它。由于驱动场要低得多,不到10%,这就是为什么这种新材料可以用于许多需要低驱动场才能有效的应用,如医疗设备、光学设备和软机器人。...PC版:https://www.cnbeta.com.tw/articles/soft/1369773.htm手机版:https://m.cnbeta.com.tw/view/1369773.htm

相关推荐

封面图片

科学家捕捉到光驱动聚合物的蛛丝马迹

科学家捕捉到光驱动聚合物的蛛丝马迹高速原子力显微镜与激光照射系统相结合,用于原位实时观察偶氮聚合物的变形过程。资料来源:大阪大学偶氮聚合物是一种光活性材料,这意味着当光线照射到它们时,它们会发生变化。具体来说,光线会改变它们的化学结构,从而改变薄膜的表面。这使得它们在光学数据存储和提供光触发运动等应用中颇具吸引力。能够在捕捉图像的同时用聚焦激光引发这些变化被称为原位测量。"通常,研究聚合物薄膜的变化时,需要对其进行处理,例如用光照射,然后进行测量或观察。然而,这只能提供有限的信息,"该研究的第一作者KeishiYang解释说。"使用高速原子力显微镜(HS-AFM)装置,包括一台带激光器的倒置光学显微镜,使我们能够触发偶氮聚合物薄膜的变化,同时以高时空分辨率对其进行实时观测。"(a)与激光辐照系统集成的高速原子力显微镜概述b)偶氮聚合物变形的高速原子力显微镜图像。资料来源:美国化学学会高速原子力显微镜测量能够以每秒两帧的速度跟踪聚合物薄膜表面的动态变化。研究还发现,所使用的偏振光的方向会对最终的表面图案产生影响。利用原位方法进行的进一步研究有望深入了解光驱动偶氮聚合物变形的机理,从而最大限度地发挥这些材料的潜力。该研究的资深作者TakayukiUmakoshi说:"我们已经展示了观察聚合物薄膜形变的技术。不过,在此过程中,我们展示了将尖端扫描HS-AFM和激光源结合起来,用于材料科学和物理化学的潜力"。对光有反应的材料和过程在化学和生物学的多个领域都很重要,包括传感、成像和纳米医学。原位技术为加深理解和最大限度地发挥潜力提供了机会,因此有望应用于各种光学设备。编译自/scitechdaily...PC版:https://www.cnbeta.com.tw/articles/soft/1423710.htm手机版:https://m.cnbeta.com.tw/view/1423710.htm

封面图片

重新定义电子产品:铁电材料现在可以具有弹性

重新定义电子产品:铁电材料现在可以具有弹性铁电材料在数据存储和处理、传感、能量转换和光电等应用领域非常有用,因此在手机、平板电脑和其他日常使用的电子设备中非常受欢迎。然而,传统的铁电材料在应力释放后的弹性恢复能力很差,通常低于2%,因此容易变脆(铁电陶瓷)或变塑(铁电聚合物)。70%应变下的弹性铁电。资料来源:NIMTE这些材料的铁电特性主要归因于其晶体区域,而晶体区域缺乏内在弹性。为了解决铁电响应和弹性恢复的难题,研究人员开发了一种精确的"轻微交联"方法。研究人员以聚偏氟乙烯-三氟乙烯为基体材料,以软长链聚氧化乙烯二胺为交联剂,在线性铁电聚合物中建立了网络结构。通过将交联密度精确控制在1-2%,交联铁电薄膜主要呈现出β相结晶结构,并均匀地分散在交联聚合物网络中。在应力作用下,网络结构可以均匀分布并承受外力,从而减轻对结晶区域的破坏。因此,这些新开发的铁电材料兼具弹性和相对较高的结晶度。实验结果还表明,即使在应变高达70%的情况下,交联薄膜仍能保持稳定的铁电响应和弹性恢复。"基于他们的研究,高志强等人确立了一个新的研究方向--弹性铁电。"国际知名铁电材料专家熊仁根教授说弹性铁电材料具有优异的抗机械疲劳和抗铁电疲劳性能,在可穿戴电子设备和智能医疗领域具有广阔的应用前景。...PC版:https://www.cnbeta.com.tw/articles/soft/1390855.htm手机版:https://m.cnbeta.com.tw/view/1390855.htm

封面图片

环保技术新突破:科学家利用植物纤维素制成新型聚合物

环保技术新突破:科学家利用植物纤维素制成新型聚合物科学家们设计出了一种利用纤维素生产可回收且稳定的聚合物的方法,为传统塑料提供了一种可持续的替代品。这一研究成果为生产环保材料提供了新的可能性。上图为本研究开发的新型可回收聚合物制成的透明薄膜。资料来源:FengLi他们开发出了一种方便、多用途的方法,利用从植物纤维素中提取的化学物质制造各种聚合物;最重要的是,这些聚合物可以完全回收利用。该方法发表在《ACSMacroLetters》杂志上。纤维素是植物生物质中最丰富的成分之一,是所有植物细胞周围坚韧细胞壁的关键部分。纤维素很容易从稻草和锯末等植物废料中获取,因此,将纤维素用作聚合物生产的原料不会减少用于粮食生产的农业用地。纤维素是一种长链多糖聚合物,即由多个糖基(特别是葡萄糖)通过化学键连接而成。为了制造新型聚合物,北海道研究小组使用了两种市售的小分子,即由纤维素制成的左旋葡糖烯酮(LGO)和二氢左旋葡糖烯酮(Cyrene)。他们开发了新颖的化学工艺,将LGO和Cyrene转化为各种非天然多糖聚合物。通过改变聚合物的精确化学结构,可以生成不同的材料,用于各种可能的应用。"我们面临的最大挑战是控制将较小单体分子连接在一起的聚合反应,以及获得对普通应用足够稳定的多糖材料,同时还能在特定化学条件下被分解和回收。"左起研究小组的佐藤俊文、水上雄太、李锋和矶野拓也。图片来源:李锋李补充说,研究过程中最大的惊喜是他们制作的聚合物薄膜具有很高的透明度,这对于这些聚合物似乎最适合的专业应用来说可能至关重要。另一位通讯作者ToshifumiSatoh教授补充说:由于这些材料相当坚硬,可能难以用作塑料袋等柔性塑料材料,因此我认为它们更适合用作光学、电子和生物医学应用领域的高性能材料。世界各地的其他研究小组也在探索用植物制造塑料替代聚合物的潜力,其中一些"生物塑料"已经可以在市场上买到,但佐藤的研究小组为这一快速发展的领域增添了一个重要的新机会。研究小组现在计划探索更多的可能性,但可行的结构变化非常多,因此他们希望与计算化学、人工智能和自动合成方面的专家联手探索这些选择。"我们希望这项工作能开发出多种有用的非天然多糖聚合物,使其成为从生物质到高效回收的可持续合成闭环的一部分。"编译自:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1424673.htm手机版:https://m.cnbeta.com.tw/view/1424673.htm

封面图片

科学家在聚合物半导体中的新发现:改变非手性聚合物以产生手性结构

科学家在聚合物半导体中的新发现:改变非手性聚合物以产生手性结构伊利诺伊大学厄巴纳-香槟分校的化学家们领导的一项新研究为半导体材料的开发带来了新的视角,这种材料可以做到传统硅材料所做不到的事情--利用手性的力量(一种不可叠加的镜像)。手性是自然界用来构建复杂结构的策略之一,DNA双螺旋可能是最著名的例子--由分子"骨架"连接并向右扭曲的两条分子链。在自然界中,手性分子(如蛋白质)通过选择性地传输相同自旋方向的电子,可以非常有效地输送电能。模仿自然界手性的研究几十年来,研究人员一直致力于在合成分子中模仿自然界的手性。由化学与生物分子化学教授刁颖领导的一项新研究调查了对一种名为DPP-T4的非手性聚合物进行各种改性后在聚合物基半导体材料中形成手性螺旋结构的效果。潜在的应用包括像树叶一样发挥作用的太阳能电池、利用电子量子态更高效计算的计算机以及捕捉三维而非二维信息的新型成像技术等。一张光学显微照片显示了一种聚合物的手性液晶相,研究人员正在探索利用这种聚合物生产高效半导体材料。图片来源:YingDiao实验室提供研究结果发表在《美国化学学会中心科学》(ACSCentralScience)杂志上。研究结果和实验Diao说:"我们一开始认为,对DPP-T4分子的结构进行细微调整--通过添加或改变与骨架相连的原子来实现--将改变结构的扭转或扭曲,并诱发手性。然而,我们很快发现事情并非如此简单。"利用X射线散射和想象,研究小组发现,他们的"轻微调整"导致了材料相位的重大变化。"我们观察到的是一种金发姑娘效应,"Diao说。"通常情况下,分子会像扭曲的金属丝一样聚集在一起,但突然间,当我们把分子扭转到临界扭力时,它们开始以平板或薄片的形式聚集成新的介相。通过测试这些结构弯曲偏振光的能力--这是对手性的测试--我们惊讶地发现,这些薄片也能扭曲成内聚的手性结构。"研究小组的发现揭示了一个事实,即并非所有聚合物在模仿手性结构中的高效电子传输时都会表现出类似的行为。研究报告指出,至关重要的是,不要忽视为发现未知相而形成的复杂介相结构,这些介相结构可带来前所未有的光学、电子和机械特性。...PC版:https://www.cnbeta.com.tw/articles/soft/1398365.htm手机版:https://m.cnbeta.com.tw/view/1398365.htm

封面图片

科学家创造出的新材料兼具玻璃聚合物的硬度和凝胶的拉伸性

科学家创造出的新材料兼具玻璃聚合物的硬度和凝胶的拉伸性研究人员创造了一种名为"玻璃凝胶"的新型材料,这种材料与玻璃聚合物一样坚硬,但如果施加足够的力,它可以拉伸到原长度的五倍,而不会断裂。玻璃态凝胶的一个关键特点是,它们的液体含量超过50%,这使得它们比具有类似物理特性的普通塑料更能有效导电。资料来源:北卡罗来纳州立大学王美香科学家们发明了一种名为"玻璃凝胶"的新型材料,这种材料尽管含有50%以上的液体,但却非常坚硬且不易破裂。加上玻璃凝胶易于生产,这种材料有望应用于多种领域。凝胶体和玻璃态聚合物是历来被视为截然不同的两类材料。玻璃态聚合物质地坚硬,通常比较脆。它们用于制造水瓶或飞机窗户等物品。凝胶(如隐形眼镜)含有液体,柔软而有弹性。"我们创造了一类被称为玻璃凝胶的材料,这种材料和玻璃聚合物一样坚硬,但如果施加足够的力,它可以拉伸到原来长度的五倍,而不会断裂,"这项研究论文的通讯作者、北卡罗来纳州立大学化学和生物分子工程系卡米尔和亨利-德雷福斯教授迈克尔-迪基(MichaelDickey)说。"更重要的是,一旦材料被拉伸,你就可以通过加热使其恢复原状。此外,玻璃凝胶的表面具有很强的粘性,这在硬质材料中并不多见。"该论文的共同第一作者、北卡罗来纳州立大学博士后研究员王美香说:"玻璃凝胶的一个关键特点是,它们的液体含量超过50%,这使得它们比物理特性相当的普通塑料更能高效导电。考虑到这些材料所具有的许多独特性质,我们对它们的用途感到乐观。"玻璃态凝胶,顾名思义,实际上是一种结合了玻璃态聚合物和凝胶最诱人特性的材料。为了制造玻璃态凝胶,研究人员首先将玻璃态聚合物的液态前体与离子液体混合。将这种混合液体倒入模具中,暴露在紫外线下,使材料"固化"。然后移除模具,留下玻璃状凝胶。"离子液体是一种溶剂,就像水一样,但完全由离子组成,"Dickey说。"通常在聚合物中添加溶剂时,溶剂会推开聚合物链,使聚合物变得柔软、可伸展。这就是为什么湿隐形眼镜柔软,而干隐形眼镜不柔软的原因。在玻璃态凝胶中,溶剂会将聚合物分子链推开,使其像凝胶一样具有拉伸性。然而,溶剂中的离子会强烈吸引聚合物,从而阻止聚合物链移动。链条无法移动就使其成为玻璃状。最终的结果是,由于吸引力的作用,材料变得坚硬,但由于额外的间距,材料仍然能够拉伸。"研究人员发现,玻璃凝胶可以用各种不同的聚合物和离子液体制成,但并非所有类别的聚合物都能用于制造玻璃凝胶。Dickey说:"带电或极性的聚合物有望用于玻璃凝胶,因为它们会被离子液体吸引。也许玻璃凝胶最吸引人的特点就是它们的粘性,因为虽然我们知道是什么让它们变得坚硬和可拉伸,但我们只能猜测是什么让它们如此具有粘性。"在测试中,研究人员发现,玻璃状凝胶即使含有50-60%的液体,也不会蒸发或变干。他们还认为,玻璃凝胶易于制造,因此有望得到实际应用。Dickey说:"制造玻璃态凝胶是一个简单的过程,可以通过在任何类型的模具中固化或3D打印来实现。大多数具有类似机械性能的塑料都要求制造商将聚合物作为原料进行生产,然后将聚合物运输到另一个工厂,在那里聚合物被熔化并形成最终产品。我们很高兴看到如何使用玻璃凝胶,并愿意与合作者一起确定这些材料的应用"。这篇题为"由溶剂增韧的玻璃凝胶"的论文于6月19日发表在《自然》杂志上。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1435551.htm手机版:https://m.cnbeta.com.tw/view/1435551.htm

封面图片

美国宾州州立大学创建会“思考”的柔性导电聚合物材料

美国宾州州立大学创建会“思考”的柔性导电聚合物材料美国宾夕法尼亚州立大学和美国空军研究人员创建了会“思考”的柔性导电聚合物材料。集成电路通常由封装在单一半导体材料(通常是硅)上的多个电子元件组成。根据研究人员的说法,集成电路是信号和信息可扩展计算所需的核心组件,但以前科学家从未在硅半导体以外的任何组件中实现过。首席研究员瑞安·哈恩介绍,他们创造了第一个可“思考”的工程材料,可同时感知、思考和作用于机械应力,而不需要额外的电路来处理这种信号。这种柔软的聚合物材料的作用就像一个大脑,可接收数字信息串,然后进行处理,从而产生控制反应的新数字信息序列。该导电机械材料包含可重新配置的电路,以实现组合逻辑:当材料收到外部刺激时,它将输入转换为电信息,然后进行处理以产生输出信号。据悉,这种材料可使用机械力来完成复杂的算术,或者检测无线电频率来传达特定的光信号,及其他潜在的可转换信号。相关研究24日发表在《自然》杂志上。(校对/魏健)...PC版:https://www.cnbeta.com/articles/soft/1309613.htm手机版:https://m.cnbeta.com/view/1309613.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人