化学合成可持续催化剂迎来突破 可减少对稀有金属的依赖

化学合成可持续催化剂迎来突破可减少对稀有金属的依赖研究人员开创了一种更高效、更环保的化学合成方法,有望显著提高可持续性。这项创新技术涉及将孤立的原子分散在氮化碳载体上,形成一种在酯化反应中更活跃的催化剂,这对于生产药品、食品添加剂和聚合物等产品至关重要。该催化剂减少了对稀有金属的依赖,并且可以通过阳光激活,从而抑制能源消耗。图片来源:米兰理工大学米兰理工大学的一项新发现开辟了可持续化学合成领域的新视角,推广创新解决方案,使化学品能够以更高效、更环保的方式生产。该研究发表在著名的《自然综合》杂志上。利用将孤立原子分散在氮化碳载体上的创新技术,该团队开发了一种在酯化反应中更具活性和选择性的催化剂。这是一个重要的反应,其中羧酸和溴化物结合形成用于制造药物、食品添加剂和聚合物的产品。这种新型催化剂的革命性特点是它减少了稀有金属的使用,这是节约关键资源和使工艺更具可持续性的重要一步。此外,该催化剂可以通过阳光激活,从而无需采用能源密集型方法。这一发现在减少对有限资源的依赖和降低催化过程对环境的影响方面具有巨大的潜力。化学工程副教授GianvitoVilé教授协调了该项目,而米兰理工大学MarieSkłodowska-Curie博士后研究员MarkBajada是该项目的第一论文作者。该研究是与米兰比可卡大学和都灵大学的研究人员密切合作进行的,并由欧盟委员会通过MarieSkłodowska-Curie博士后奖学金和最近授予米兰理工大学(SusPharma)的HorizonEurope项目资助)。...PC版:https://www.cnbeta.com.tw/articles/soft/1369831.htm手机版:https://m.cnbeta.com.tw/view/1369831.htm

相关推荐

封面图片

米兰理工新发现可为可持续化学合成带来革命性变革

米兰理工新发现可为可持续化学合成带来革命性变革米兰理工大学的研究人员开发出一种阳光激活催化剂,可有效推动酯化反应,减少稀有金属的使用,提供更具可持续性的化学合成。自然-合成》(NatureSynthesis)杂志刊登了这一进展,它有望节约资源并减少对环境的影响。资料来源:米兰理工大学利用在氮化碳载体上分散孤立原子的创新技术,研究小组开发出了一种在酯化反应中更具活性和选择性的催化剂。这是一种重要的反应,在这种反应中,羧酸和溴化物结合形成用于制造药品、食品添加剂和聚合物的产品。这种新型催化剂的革命性特点是减少了稀有金属的使用,这是向节约关键资源和提高工艺可持续性迈出的重要一步。此外,这种催化剂可通过阳光激活,无需使用能源密集型方法。这一发现在减少对有限资源的依赖和降低催化过程对环境的影响方面具有巨大潜力。化学、材料和化学工程系化学工程副教授GianvitoVilé教授负责协调该项目,米兰理工大学MarieSkłodowska-Curie博士后研究员MarkBajada是论文的第一作者。这项研究是与米兰比可卡大学和都灵大学的研究人员密切合作进行的,由欧盟委员会通过最近授予米兰理工大学的玛丽-斯克沃多夫斯卡-居里博士后奖学金和地平线欧洲项目(SusPharma)提供资助。...PC版:https://www.cnbeta.com.tw/articles/soft/1378273.htm手机版:https://m.cnbeta.com.tw/view/1378273.htm

封面图片

像超级酶一样工作 化学家开发出分解生物质的合成催化剂

像超级酶一样工作化学家开发出分解生物质的合成催化剂在一个细雨蒙蒙的下午,赵岩指着校园窗外的树木。作为爱荷华州立大学的化学教授,他正在开创一种新型合成催化剂,这种催化剂可以分解纤维素,而纤维素是植物纤维,是树木高度和强度的来源。纤维素经久耐用--树木不会在雨后消失,因此分解纤维素是一项巨大的挑战。PC版:https://www.cnbeta.com.tw/articles/soft/1379061.htm手机版:https://m.cnbeta.com.tw/view/1379061.htm

封面图片

廉价高效的新型催化剂可改变可再生能源的储存方式

廉价高效的新型催化剂可改变可再生能源的储存方式由香港城市大学开发、伦敦帝国理工学院测试的一种利用单个铂原子的新型催化剂,有望更方便、更经济地利用可再生能源储存氢气。这项创新将铂原子分散在硫化钼上,减少了铂的用量,提高了电解效率。共同作者、帝国理工学院化学系的AnthonyKucernak教授说:"《英国氢战略》提出了到2030年低碳氢生产能力达到10GW的宏伟目标。为了实现这一目标,我们需要提高廉价、易于生产和高效储氢的产量。新型电催化剂可以为此做出重大贡献,最终帮助英国实现到2050年净零排放的目标。"风能和太阳能等可再生能源发电量正在迅速增长。然而,所产生的部分能源需要储存起来,以便在天气条件不利于风能和太阳能时使用。一个很有前景的方法就是以氢气的形式储存能源,氢气可以储存和运输,以供日后使用。新型催化剂材料资料来源:香港城市大学为此,可再生能源被用来将水分子分裂成氢和氧,能量储存在氢原子中。这需要使用铂催化剂来刺激水分子的分裂反应,也就是所谓的电解。然而,虽然铂是这种反应的极佳催化剂,但它既昂贵又稀有,因此尽量减少铂的使用对于降低系统成本和限制铂的提取非常重要。现在,在最近发表于《自然》(Nature)的一项研究中,研究小组设计并测试了一种催化剂,这种催化剂使用尽可能少的铂,从而产生了一种高效但成本效益高的水分离平台。首席研究员、香港城市大学张华教授说:"电催化水分裂产生的氢被认为是在不久的将来最有希望取代化石燃料的清洁能源之一,可减少环境污染和温室效应。"测试工具该团队的创新涉及在硫化钼(MoS2)薄片中分散单原子铂。这比现有催化剂使用的铂要少得多,甚至还能提高性能,因为铂与钼相互作用,提高了反应的效率。在纳米片支撑物上生长薄催化剂,使城大团队能够制造出高纯度的材料。随后,帝国理工大学的库切纳克教授实验室对这些材料进行了表征,并开发了确定催化剂如何工作的方法和模型。帝国理工大学的团队拥有进行严格测试的工具,因为他们已经开发出了几种专门用于使用这种催化剂的技术。库切纳克教授及其同事已经在这些技术的基础上成立了几家公司,其中包括专门从事氢流电池研发的RFCPower公司。使用氢气一旦可再生能源以氢的形式储存起来,要想再次将其用作电力,就需要使用燃料电池进行转换,因为燃料电池在氧分裂反应中会产生水蒸气作为副产品。最近,库切纳克教授及其同事发现了一种用于该反应的单原子催化剂,这种催化剂以铁而不是铂为基础,这也将降低这项技术的成本。库切纳克教授领导的另一家分拆公司布兰布尔能源公司(BrambleEnergy)将在其燃料电池中测试这项技术。因此,这两种单原子催化剂--一种帮助将可再生能源转化为氢储存起来,另一种帮助将这些能量在以后以电力形式释放出来--都有能力让氢经济更接近现实。...PC版:https://www.cnbeta.com.tw/articles/soft/1385599.htm手机版:https://m.cnbeta.com.tw/view/1385599.htm

封面图片

催化剂将氢电解器中的铱用量减少了95%

催化剂将氢电解器中的铱用量减少了95%访问:Saily-使用eSIM实现手机全球数据漫游安全可靠源自NordVPN日本理化学研究所可持续资源科学中心(CSRS)的中村隆平(RyuheiNakamura)领导的研究人员在今天(5月9日)发表在《科学》杂志上的一项研究中报告了一种新方法,该方法将反应所需的铱量减少了95%,而且不会改变氢的生产率。这一突破将彻底改变我们生产生态友好型氢气的能力,并有助于实现碳中和的氢经济。合成氧化铱的扫描电子显微镜图像(D)和分散在电沉积在耐腐蚀铂涂层钛网上的氧化锰上的铱(亮点)的扫描透射电子显微镜图像(E、F、G)。资料来源:理化学研究所制氢挑战世界上70%的面积被水覆盖,氢气是真正的可再生能源。然而,从水中提取氢气的规模还无法与化石燃料能源生产相媲美。目前,全球能源产量接近18兆瓦,这意味着在任何特定时刻,全球平均生产约18万亿瓦特的电力。替代性绿色能源生产方式要想取代化石燃料,就必须能够达到相同的能源生产率。从水中提取氢气的绿色方法是一种需要催化剂的电化学反应。这种反应的最佳催化剂--产氢率最高、最稳定的催化剂--是稀有金属,其中铱是最好的催化剂。但铱的稀缺是个大问题。共同第一作者孔爽说:"铱是如此稀有,以至于将全球氢气生产规模扩大到太瓦级估计需要40年的铱。"催化剂开发的创新理化学研究所CSRS的生物功能催化剂研究小组正试图绕过铱的瓶颈,寻找其他方法来长时间高速生产氢气。从长远来看,他们希望开发出基于普通土金属的新型催化剂,这种催化剂将具有高度的可持续性。事实上,该团队最近使用一种氧化锰作为催化剂,成功地将绿色制氢稳定在一个相对较高的水平。不过,以这种方式实现工业水平的生产还需要数年时间。中村隆平说:"我们需要一种方法来弥合稀有金属电解槽与普通金属电解槽之间的差距,这样我们就能在多年内逐步过渡到完全可持续的绿色氢气。"目前的研究正是通过将锰与铱相结合来实现这一目标。研究人员发现,当他们把铱原子分散在一块氧化锰上,使它们不会相互接触或凝结在一起时,质子交换膜(PEM)电解槽中的氢气产生速度与单独使用铱时相同,但铱含量减少了95%。潜力和未来方向使用这种新型催化剂,可以连续生产氢气超过3000小时(约4个月),效率高达82%,且无降解。合著者李爱龙说:"氧化锰和铱之间意想不到的相互作用是我们取得成功的关键。这是因为这种相互作用产生的铱处于罕见的高活性+6氧化态"。中村隆平认为,新催化剂达到的制氢水平极有可能立即派上用场。他说:"我们希望我们的催化剂能够很容易地转移到现实世界的应用中,这将立即提高目前PEM电解器的容量。"研究小组已经开始与工业界的合作伙伴合作,他们已经能够改进最初的铱锰催化剂。今后,理化学研究所CSRS研究人员计划继续研究铱和氧化锰之间的特定化学作用,希望能进一步减少必要的铱含量。同时,他们将继续与工业合作伙伴合作,并计划在不久的将来在工业规模上部署和测试这种新型催化剂。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1430304.htm手机版:https://m.cnbeta.com.tw/view/1430304.htm

封面图片

北理工研究人员设计的电催化剂促进了清洁氢气的生产效率

北理工研究人员设计的电催化剂促进了清洁氢气的生产效率北京理工大学的研究人员设计了一种具有非晶相和晶相以及丰富缺陷的电催化剂,可以更有效地分解水并产生清洁燃烧的氢气。图片来源:纳米研究能源,清华大学出版社研究人员的研究结果最近发表在《纳米研究能源》杂志上。中国科学院教授李翠玲表示:“由可再生能源驱动的水电解制氢,即利用电流分解水,将氢气与氧气分离,是缓解和解决能源和环境危机的一项有前景的技术。”析氧反应是水电解的阳极反应,其中直流电引起化学反应,将氧分子从水分子中分离出来。然而这种反应是“一个缓慢的过程”,它限制了水电解作为生产氢气的可持续机制。据李说,析氧反应很慢,因为它需要大量的能量来触发分子转移其成分,但如果与更高效的催化剂结合,可以用更少的能量加速。开发用于析氧反应的高效电催化剂对于开发用于清洁能源转换的电化学装置至关重要,研究人员转向氧化钌,这是一种成本较低的催化剂,与其他催化剂相比,它对反应物和中间体的粘附更少。李说:“与商业产品相比,氧化钌基纳米材料具有更好的析氧反应性能,而迫切需要更复杂的电催化剂设计策略来激发更有效的催化性能,并且在很大程度上尚未得到探索。”为了填补这一空白,研究人员合成了氧化钌多孔颗粒。然后,他们处理颗粒以产生合理调节的异相,这意味着颗粒包含集成在一起的不同结构。多孔和多相结构提供了一种缺陷-本质上是原子结构中的缺口,这使得析氧反应能够更有效地进行更多的活性位点。李说:“得益于所得样品的丰富缺陷、晶体边界和活性位点可及性,证明了优异的析氧反应性能。工程电催化剂不仅能产生更好的析氧反应,而且还可以产生更好的析氧反应。为该过程提供更少的电力。这项研究证明了相工程的重要性,并为策略组合催化剂的设计和合成提供了新途径。”...PC版:https://www.cnbeta.com.tw/articles/soft/1368041.htm手机版:https://m.cnbeta.com.tw/view/1368041.htm

封面图片

新型耐用且价格低廉的合成氨催化剂可稳定生产且减少碳足迹

新型耐用且价格低廉的合成氨催化剂可稳定生产且减少碳足迹哈伯-博世工艺通常用于通过在高压和高温下将氢气(H2)和氮气(N2)在催化剂上结合起来合成氨气(NH3),这一反应是合成氮肥的基础,是有助于提高农作物产量和提高全球粮食产量的最重要的科学突破之一。PC版:https://www.cnbeta.com.tw/articles/soft/1333419.htm手机版:https://m.cnbeta.com.tw/view/1333419.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人