"行星中的行星":地震学家探究地球内部的核心

"行星中的行星":地震学家探究地球内部的核心在地球的中心是一个固体金属球,一种"行星中的行星",它的存在使表面的生命成为可能,至少就我们所知。地球的内部核心是如何形成、成长和随时间演变的,这仍然是一个谜,一个由犹他大学领导的研究小组正在寻求借助来自自然发生的地震的地震波来一探究竟。虽然这个直径2442公里的球体只占地球总体积的不到1%,但它的存在是地球磁场的原因,如果没有它,地球将是一个非常不同的地方。但是,据犹他大学地质与地球物理系的前博士生GuanningPang说,内核并不是科学家们曾经假设的那种均匀的质量,而更像是由不同"织物"组成的织锦。Pang说:"我们第一次证实,这种不均匀性在内核内随处可见。"Pang是一项新研究的主要作者,该研究于7月5日发表在《自然》杂志上,打开了一扇通往地球最深处的窗口。他进行了这项研究,作为他在犹他大学博士论文的一部分。监督这项研究的犹他大学地震学家KeithKoper说:"我们的研究是关于试图观察内核内部的,这就像一个边疆地区。任何时候你想对某一事物的内部进行成像,必须剥去浅层的影响。因此,这是最难制作图像的地方,是最深的部分,而且还有一些关于它的未知的东西。"这项研究利用了由为探测核爆炸而设立的全球地震阵列网络产生的特殊数据集。1996年,联合国成立了全面禁止核试验条约组织(CTBTO)的筹备委员会,以确保遵守禁止此类爆炸的国际条约。地质学教授KeithKoper负责犹他大学的地震仪站它的核心是国际监测系统(IMS),有四个系统,使用遍布世界各地的先进传感仪器探测爆炸。虽然它们的目的是执行国际核爆炸禁令,但它们已经产生了大量的数据,科学家可以利用这些数据对地球内部、海洋和大气中发生的事情进行新的了解。这些数据促进了照亮流星爆炸的研究,确定了侏儒蓝鲸的群落,推进了天气预测,并提供了关于冰山如何形成的见解。虽然地球的表面已经被彻底测绘和描述,但其内部却更难研究,因为它无法直接进入。感知这一隐藏领域的最佳工具是地震,地震波从地球薄薄的地壳中传播出来,并在其岩石地幔和金属核心中振动。"这颗行星是由小行星形成的,这些小行星[在太空中]是某种增殖的。它们相互碰撞,你产生了大量的能量。所以整个星球,当它形成的时候,正在熔化,"Koper说。"这只是铁更重,你得到了我们所说的核心形成。金属下沉到中间,液态岩石在外面,然后随着时间的推移,它基本上冻结了。所有金属都在下面的原因是它们比岩石更重。"在过去的几年里,Koper的实验室一直在分析对内核敏感的地震数据。以前的一项研究,由Pang领导,确定了地球和内核的旋转之间的变化,这可能引发了2001年至2003年一天的长度的变化。地球的核心,直径约为4300英里,主要由铁和一些镍以及其他一些元素组成。外核保持液体状态,包裹着固体内核。位于大学校园内的地震仪站记录地球运动犹他大学地震仪站负责人、地质学教授Koper说:"这就像行星中的行星,它有自己的旋转,并被这个大的熔融铁海洋所解耦。"地球周围的磁能保护场是由液态外核内发生的对流产生的,外核在固态核心上方延伸了2260公里(1795英里)。熔化的金属上升到固体内核之上,当它接近地球的岩石地幔时冷却并下沉。这种循环产生了笼罩地球的电子带。如果没有一个坚实的内核,这个场会弱得多,行星表面会受到辐射和太阳风的轰击,这些辐射和太阳风会剥去大气层,使表面不适合居住。在这项新的研究中,犹他大学的研究小组查看了放置在世界各地的20个地震仪阵列所记录的地震数据,包括在南极洲的两个地震仪。离犹他州最近的是在怀俄明州的皮内代尔外。这些仪器被插入花岗岩地层中钻出的长达10米的钻孔中,并按模式排列,以集中它们接收的信号,类似于抛物线天线的工作方式。Pang分析了来自2455次地震的地震波,这些地震都超过了5.7级,或者说与2020年震撼盐湖城的地震强度差不多。这些波在内核上反弹的方式有助于绘制其内部结构。较小的地震不会产生强到对研究有用的波。科学家在1936年首次使用地震波来确定内核是固体。在丹麦地震学家IngeLehmann发现之前,人们认为整个核心是液态的,因为它非常热,接近10000华氏度,与太阳表面的温度差不多。在地球历史上的某个时刻,内核开始"成核",或在地球中心存在的巨大压力下凝固。这一过程何时开始仍然未知,但是犹他大学的团队从地震数据中收集到了重要的线索,这些数据显示了与穿透到核心内部的波有关的散射效应。"我们最大的发现是,当你越深入时,不均匀性往往越强。在地球的中心,它往往更强,"Pang说。"我们认为,这种结构与内核的增长速度有关。很久以前,内核增长得非常快。它达到了一个平衡,然后它开始增长得更慢,"Koper说。"并不是所有的铁都变成了固体,所以一些液态的铁可能被困在里面。"参与这项由国家科学基金会资助的研究的是来自南加州大学、法国南特大学和洛斯阿拉莫斯国家实验室的研究人员。...PC版:https://www.cnbeta.com.tw/articles/soft/1369997.htm手机版:https://m.cnbeta.com.tw/view/1369997.htm

相关推荐

封面图片

科学家团队通过深度行星扫描首次确认了火星核心的存在

科学家团队通过深度行星扫描首次确认了火星核心的存在它也可以用来确认一个星球的核心的大小。这项研究于10月27日发表在《自然天文学》杂志上。利用ANU的模型扫描火星的整个内部,研究人员证实红色星球的中心有一个巨大的核心--这一理论在2021年被一个科学家团队首次证实。研究报告的共同作者、来自ANU的HrvojeTkalcic教授说,根据使用ANU技术收集的数据,研究人员确定,火星核心比地球小,直径约为3620公里(2250英里)。他说:"我们的研究提出了一种创新的方法,使用一个单一的仪器来扫描任何行星的内部,这种方式以前从未做过。   "确认行星核心的存在,研究人员将其称为所有行星的"引擎室",可以帮助科学家了解更多关于一个行星的过去和演变。它还可以帮助科学家确定在一个星球的历史上,磁场是在哪个时间点形成并停止存在。核心在维持一个行星的磁场方面起着积极的作用。就火星而言,它可以帮助解释为什么与地球不同,红色星球不再有磁场--这是维持所有生命形式的关键。"建模表明,火星核心是液态的,虽然它主要由铁和镍组成,但它也可能含有氢和硫等较轻元素的痕迹。这些元素可以改变核心输送热量的能力,"主要作者WangSheng博士说,他也来自澳大利亚国立大学。"磁场很重要,因为它为我们屏蔽了宇宙辐射,这就是地球上的生命得以存在的原因。"利用火星表面的一个地震仪,ANU团队测量了特定类型的地震波。 由火星地震引发的地震波,在火星内部回荡时,会发出一系列信号或"回声",并随时间变化。  这些地震波穿透火星核心并在其上反弹。研究人员对"晚期"和"较弱"的信号感兴趣,这些信号在从地震、流星体撞击和其他来源发出后的几个小时内可以存活。"尽管这些晚期信号似乎是嘈杂的,没有什么用处,但这些在火星不同地点记录的微弱信号之间的相似性表现为一种新的信号,揭示了红色星球的心脏存在一个大核心,"Tkalcic教授说。 "我们可以确定这些地震波走多远才能到达火星核心,但也可以确定它们在火星内部的传播速度。这些数据有助于我们对火星核心的大小做出估计。"据研究人员称,他们使用单一的地震仪来确认行星核心的存在的方法也是一个"具有成本效益的解决方案"。"火星上有一个单一的地震站。在1970年代,月球上有四个。"Wang博士说:"由于成本高昂,在未来几十年甚至本世纪,拥有有限的仪器的情况不太可能改变。我们现在需要一种方法,只使用一个地震仪来研究行星内部。"研究人员希望这种由ANU开发的涉及单一地震仪的新技术可以用来帮助科学家更多了解我们的其他行星邻居,包括月球。美国和中国计划向月球发送地震仪,澳大利亚也有参与未来任务的雄心,因此有可能使用新的和更复杂的仪器进行进一步研究。  虽然有很多关于行星核心的研究,但人类拥有的行星内部的图像仍然非常模糊。但是有了像这样的新仪器和新方法,我们将能够得到更清晰的图像,这将帮助我们回答一些问题,例如内核有多大,它们是采取固体还是液体形式。 甚至可以用来分析木星的卫星和外太阳系行星的固体。为了开展研究,澳大利亚国立大学的科学家们使用了从美国宇航局InSight登陆器上附着的地震仪收集的数据,该登陆器自2018年在火星上着陆以来,一直在收集有关火星地震、火星天气以及该星球内部的信息。...PC版:https://www.cnbeta.com.tw/articles/soft/1332267.htm手机版:https://m.cnbeta.com.tw/view/1332267.htm

封面图片

研究认为地球的内部核心可能正在扭转其旋转方向

研究认为地球的内部核心可能正在扭转其旋转方向在2023年1月的科学杂志《自然-地球科学》中,北京大学的研究人员宋晓东和杨毅声称,地球的内核在2009年左右停止了相对于其他层的旋转。地球的最内层在我们脚下约3100英里处,由热铁构成,大约有冥王星那么大,可以独立于地幔和地壳旋转,因为有一个液体的外核围绕着它。研究人员说,内核在停止旋转后开始反转,这个过程大约每35年重复一次。上一次逆转发生在1970年代初;下一次可能是在2040年代中期。这项研究涉及测量穿越地球的地震波。这些波纹可以追溯到1964年,起源于地震和核爆炸。在20世纪90年代初显示出明显时间变化的波纹在过去十年中显示出相对轻微的变化,可能表明核心的旋转已经暂停。研究人员发现了1970年代早期的类似数据,该数据与一天的长度变化相关。南加州大学的地震学家约翰-维达勒不同意。他认为根据20世纪60年代末至70年代初的核爆炸数据,内核每6年振荡一次。其他地球物理学家有许多理论,但维达尔认为没有任何模型能充分解释所有的数据。一种理论声称,内核在2001年至2013年期间大幅移动,但此后没有再移动。澳大利亚国立大学地球物理学家HrvojeTkalcic在他的研究中声称,内核每20到30年来回循环,而不是每35年向一个方向变化。然而,他也对所有提出的理论的准确性表示怀疑。地震数据只能提供关于地球内部发生的有限信息。其他理论推测,内部的核心可能有另一个核心在里面。所以科学家们还没有就地球内部发生的事情达成共识。...PC版:https://www.cnbeta.com.tw/articles/soft/1340765.htm手机版:https://m.cnbeta.com.tw/view/1340765.htm

封面图片

新研究显示地球的内部核心可能富含氧气

新研究显示地球的内部核心可能富含氧气这项研究由HPSTAR(高压科学与技术高级研究中心)的刘进博士和哥伦比亚大学的孙杨博士共同领导,最近发表在《创新》杂志上。作为地球上最神秘的地方之一,地球的固体内核处于地球上最极端的温度和压力环境中,其压力超过300万个大气压,温度接近太阳表面,约6000K(约10000华氏度)。由于内核远非人类所能触及,我们只能从地震产生的地震信号中推断其密度和化学成分。目前,人们认为内核中存在轻质元素,但其类型和含量仍有争议。宇宙化学和地球化学证据表明,它应该含有硫、硅、碳和氢。实验和计算也证实,这些元素与纯铁混合,在地球深处的高温高压条件下形成各种铁合金。然而,与我们密切相关的氧,通常认为被排除在内核之外。这主要是因为在地表或地幔环境中从未发现过富含铁成分的铁-氧合金。所有已知的铁氧化物中的氧含量都大于或等于50个原子百分比。尽管人们一直在试图合成具有富铁成分的氧化铁化合物,但这种物质还从未被发现。地球的内部核心是如此"缺氧"吗?为了回答这个问题,本研究进行了一系列的实验和理论计算。为了接近地心的温度和压力,将纯铁和氧化铁放在两个钻石砧的尖端,用高能激光束进行加热。经过多次尝试,发现在220-260GPa和3000K以上,铁和氧化铁之间发生了化学反应。XRD结果显示,反应产物与纯铁和氧化铁的常见高温高压结构不同。使用遗传算法进行的理论晶体结构搜索证明,富铁的Fe-O合金可以在大约200GPa下稳定存在。在这样的条件下,新的富含铁的Fe-O合金形成了一个六边形的紧密堆积结构,其中氧层被安排在铁层之间以稳定结构。这样的机制产生了许多密包排列,形成了一个具有大构型熵的富含铁的Fe-O化合物大家族。基于这一理论信息,发现Fe28O14的原子构型与实验测量的XRD图案相匹配。进一步的计算表明,富含Fe-O的相是金属性的,与低压下的普通铁氧化物形成对比。电子结构取决于O的浓度以及铁和O层的排列。该合金的机械性能和热性能需要在未来进一步研究。...PC版:https://www.cnbeta.com.tw/articles/soft/1335913.htm手机版:https://m.cnbeta.com.tw/view/1335913.htm

封面图片

天文学家在超冷矮星SPECULOOS附近发现系外行星 距地球仅55光年

天文学家在超冷矮星SPECULOOS附近发现系外行星距地球仅55光年系外行星SPECULOOS-3b绕其恒星运行的艺术家视图。这颗行星和地球一样大,而它的恒星比木星稍大,但质量更大。图片来源:LionelGarcia超冷矮星是宇宙中质量最小的恒星,大小与木星相似。与太阳相比,它们的温低上许多,质量小十倍,亮度小一百倍。它们的寿命比我们的恒星长一百多倍,当宇宙变得寒冷和黑暗时,它们将是最后闪耀的恒星。虽然超冷矮星在宇宙中比太阳恒星常见得多,但由于它们的光度很低,人们对它们的了解仍然很少。尤其是对它们的行星知之甚少,尽管它们在我们银河系的行星群中占了很大一部分。正是在这样的背景下,由列日大学领导的SPECULOOS协会刚刚宣布发现了一颗新的地球大小的行星,它围绕着附近的一颗超冷矮星运行。SPECULOOS-3b系外行星距离地球约55光年。从宇宙尺度来看,这是非常近的距离,因为我们的银河系长达10万光年。SPECULOOS3是在这种恒星周围发现的第二个行星系统:"SPECULOOS-3b实际上与我们的行星大小相同,"发表在《自然-天文学》上的这篇文章的第一作者、天文学家MichaëlGillon解释说。它的昼夜永远不会结束。我们认为,这颗行星是潮汐锁定的,因此它的同一面,即日面,总是面向恒星,就像月球面向地球一样。另一方面,黑夜的那一面将被锁定在无尽的黑暗中"。系外行星SPECULOOS-3b绕其恒星运行的艺术家视图。这颗行星和地球一样大,而它的恒星比木星稍大,但质量更大。资料来源:NASA/JPL-Caltech由天文学家米夏埃尔-吉隆(MichaëlGillon)发起并领导的SPECULOOS(搜索超冷矮星上的行星)项目,专门用于搜索最近的超冷矮星周围的系外行星。研究人员继续说:"这些恒星散布在天空中,因此必须在数周内逐一对它们进行观测,这样才有可能探测到凌日行星。这就需要一个由专业机器人望远镜组成的专用网络。这就是SPECULOOS背后的理念,它由列日大学、剑桥大学、伯明翰大学、伯尔尼大学、麻省理工学院和苏黎世联邦理工学院联合运行。""我们专门设计了SPECULOOS来观测附近的超冷矮星,以寻找适合详细研究的岩石行星,"列日大学天文学家LaetitiaDelrez评论道。"2017年,我们使用TRAPPIST望远镜的SPECULOOS原型发现了著名的TRAPPIST-1系统,该系统由7颗地球大小的行星组成,其中包括几颗潜在的宜居行星。这是一个极好的开端!"SPECULOOS-3恒星的温度是太阳的1/3左右,平均温度约为2600°C。由于它的超短轨道,这颗行星每秒钟从太阳接收到的能量几乎是地球的16倍,因此,它实际上受到了高能辐射的轰击。麻省理工学院教授、SPECULOOS北方天文台及其Artemis望远镜联合主任JuliendeWit说:"在这样的环境中,行星周围存在大气层的可能性很小。"这颗行星没有大气层这一事实可能会在多个方面带来好处。例如,它可以让我们了解到很多关于超冷矮星的知识,这反过来又可以对它们潜在的宜居行星进行更深入的研究。事实证明,SPECULOOS-3b是2021年发射的詹姆斯-韦伯太空望远镜(JamesWebbSpaceTelescope)的绝佳目标。"有了詹姆斯-韦伯太空望远镜,我们甚至可以研究这颗行星表面的矿物学!"埃尔莎-杜克罗特(ElsaDucrot)兴奋地说,她曾是列日大学的研究员,现在巴黎天文台工作。"这一发现表明,我们的SPECULOOS-North观测站有能力探测到适合进行详细研究的地球大小的系外行星。而这仅仅是个开始!在瓦隆大区和列日大学的资助下,两台新的望远镜--猎户座望远镜和阿波罗望远镜将很快加入特内里费岛泰德火山高原上的阿耳忒弥斯望远镜,以加快寻找这些迷人行星的步伐,"MichaëlGillon总结道。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1431007.htm手机版:https://m.cnbeta.com.tw/view/1431007.htm

封面图片

天文学家在40光年外发现与地球大小相当的潜在宜居行星Gliese 12b,

天文学家在40光年外发现与地球大小相当的潜在宜居行星Gliese12b,天文学家现在计划分析Gliese12b,以确定它是否拥有类地大气,这可以揭示这颗系外行星是否能维持水在表面形成的合适温度-这是维持生命的基本物质。Gliese12b被标记为"迄今已知最近的、经过视向凌日、温和的地球大小世界",是美国宇航局95亿美元詹姆斯·韦伯太空望远镜未来探测的候选目标。一个国际天文学家团队使用美国宇航局的"过境系外行星巡天卫星"(TESS)确定了Gliese12b的位置。这些发现通常是使用"过境法"得到的-当行星横穿它的恒星时,会导致恒星亮度下降。在系外行星过境期间,来自恒星的光线穿过它的大气层,吸收某些波长,释放出可由像詹姆斯·韦伯这样的望远镜检测到的气体分子。研究团队发现,Gliese12b的轨道比地球更紧凑,意味着它更频繁地横穿其名为格列福12的冷红矮星,完成一个轨道需要12.8天。"Gliese12b代表了研究围绕冷星轨道的地球大小行星是否能保持其大气层的最佳目标之一,这是我们深入理解整个银河系上行星宜居性的关键一步,"澳大利亚南昆士兰大学天体物理学中心的博士生希希尔·多拉基亚说。这颗系外行星距离其矮星只有地球到太阳距离的7%,因此获得1.6倍的更多能量。然而,Gliese12b的宜居条件取决于它是否具有与地球相同类型的大气,这将使其温度接近我们星球上发现的59华氏度的平均温度。"大气层会阻挡热量,并且-取决于类型-可以大幅改变实际表面温度,"多拉基亚解释说。"我们引用的是这颗行星的'平衡温度',这是指如果它没有大气层的话它会达到的温度。"研究团队将Gliese12b与金星进行了比较,报告它的大小大致相同,从恒星获得的能量略低约85%。但由于金星没有大气层阻挡太阳的有害辐射,它发展出了温室效应,达到了752华氏度的温度。"地球是宜居的,但金星不是,因为它完全失去了水,"爱丁堡大学和伦敦大学学院的博士生拉丽莎·帕雷索普说。"因为Gliese12b的温度介于地球和金星之间,它的大气层可以为我们揭示行星在发展过程中所采取的宜居进程。"了解这颗系外行星是否可能宜居的一个重要因素是观察其恒星发出的风暴水平。通常,红矮星都具有强大的磁活性,会产生频繁的X射线耀斑,可能破坏大气层。不过,研究团队对此持乐观态度,因为格列福12恒星并未表现出任何极端风暴或行为的迹象。天文学家已经发现了大约5000颗这样的行星,但估计银河系中可能超过1万亿颗系外行星-到目前为止,只有少数被认为具备维持生命所需的环境。"我们只知道少数几个与地球类似的温和行星,它们既足够接近我们,又符合这种研究所需的其他标准,"NASAgoddard航天飞行中心的研究天体物理学家迈克尔·麦克尔文说,他也是Gliese12b研究的合著者。"为了更好地理解这些行星大气层的多样性以及它们的演化结果,我们需要更多像Gliese12b这样的例子,"他补充说。...PC版:https://www.cnbeta.com.tw/articles/soft/1432358.htm手机版:https://m.cnbeta.com.tw/view/1432358.htm

封面图片

天文学家发现拥有"熔岩半球"、4.2天过1年的地球大小的行星

天文学家发现拥有"熔岩半球"、4.2天过1年的地球大小的行星这颗新发现的行星被称为HD63433d,它是潮汐锁定的,也就是说,有一面始终朝向恒星,而另一面则始终处于黑暗之中。这颗系外行星,或者说太阳系外的行星,围绕着恒星HD63433(TOI1726)运行,属于HD63433行星系。这个炙热的世界是目前确认的最小的系外行星,年龄小于5亿岁。它也是目前发现的最接近地球大小的年轻行星,年龄约为4亿岁。与上图中的开普勒-10b一样,系外行星HD63433d也是一颗小型岩石行星,紧紧地围绕着它的恒星运行。HD63433d是目前确认的年龄小于5亿岁的最小系外行星。它也是目前发现的最接近地球大小的年轻行星,大约有4亿岁。图片来源:NASA/Ames/JPL-Caltech/T.Pyle天文学家的深入分析一个天文学家小组利用NASA的TESS(凌日系外行星巡天卫星)提供的数据分析了这个系统,该卫星可以发现"凌日"现象,即行星在运行过程中从恒星前方穿过,遮挡住一小部分星光的情况。在这个行星系统中,之前已经发现了两颗行星,因此,为了看看这颗恒星的轨道上还可能潜藏着什么,研究小组获取了数据,并移除了这两颗已知行星的信号。这让他们看到了一个额外的信号--每隔4.2天就会再次出现的小过境。经过进一步调查,他们证实这实际上是第三颗更小的行星。这颗潮汐锁定的行星非常接近地球大小(它的直径大约是我们地球直径的1.1倍),它围绕着一颗与太阳大小相似的恒星运行(这颗恒星的大小和质量分别是太阳的0.91和0.99)。这个星系中的恒星是一颗G型恒星,与我们的太阳属于同一类型。但是,HD63433d的轨道比我们更接近它的恒星,它的"年"长仅为4.2天,而且白天的温度极高。HD63433的有趣方面虽然这颗新发现的行星及其恒星的大小与我们的地球和太阳差不多,但HD63433d却与我们的地球大相径庭。首先,它是一个非常年轻的系统中的一颗非常年轻的行星。这个行星系本身比我们年轻大约10倍,与我们这个拥有45亿年历史的世界相比,这颗拥有4亿年历史的行星还处于萌芽阶段。它与恒星的距离也比我们与恒星的距离近得多。这颗行星距离恒星的距离是水星距离太阳的8倍。由于距离恒星如此之近,这颗被潮汐锁定的行星的日侧温度可以达到大约2294华氏度(1257摄氏度)。由于温度如此之高,距离恒星如此之近,而且体积如此之小,这颗行星很可能缺乏一个实质性的大气层。这些炙热的温度与CoRoT-7b和开普勒-10b等熔岩世界相当,这一发现背后的团队认为,这颗行星的日侧可能是一个"熔岩半球"。这颗行星体积小、年龄小,而且离恒星很近,是一个值得进一步探索的候选行星。后续研究可能会证实这项研究的结果,并有可能揭示有关这颗行星"阴暗面"的更多信息,以及它(可能的)大气层的状况。正如这项研究指出的,"年轻的陆地世界是制约行星形成和演化主流理论的关键试验台"。探索团队发表在《天文学杂志》上的一项新研究描述了这一发现,题为"TESSHuntforYoungandMaturingExoplanets(THYME)XI:一颗地球大小的行星围绕着400Myr大熊座移动群中一颗近邻的类太阳宿主运行"。这项研究由合著者本杰明-卡皮斯特朗和梅琳达-苏亚雷斯-富尔塔多领导,在2024年美国天文学会会议上的一次报告中进行了讨论。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1415209.htm手机版:https://m.cnbeta.com.tw/view/1415209.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人