地球生命是如何起源的?它是开始于基因,还是开始于细胞?

地球生命是如何起源的?它是开始于基因,还是开始于细胞?LUCA并不是地球第一个生命,在LUCA的时代可能有多种生物体,但它们和它们的后代都已经灭绝了,现在地球只有LUCA一脉相承。那么有趣的问题就是,LUCA是怎么来的,或者更直接的问题,地球的生命到底是如何起源的呢?还有最早的生命到底是从遗传物质开始的,还是从细胞开始,最后通过演化才得到遗传物质的呢,还是说有其它的过程?其实,这些问题现在都没有明确答案,甚至可能永远都不会有答案,但无论是过去,还是现在,许多最优秀的学者都在试图用最新的方法和证据给出让人信服的答案。目前主流的有三种假说,分别是有机化学的原始汤假说、分子生物学的RNA世界假说,以及关于无机化学的代谢和瞬态金属离子假说。原始汤假说应该是最早关于生命起源较有说服力的一个假说,因为它真的通过实验证实,而非思想实验。1952年的时候,斯坦利·米勒和哈罗德·尤里进行了这项著名的实验——米勒-尤里实验,这项实验模拟了早期地球的环境。他们在密封无菌的玻璃瓶中放入水,然后加入了当时认为的早期地球应有的大气成分,同时还制造了早期地球的高温和雷电的条件。在实验结束后,他们在这些完全由无机物组成的材料中发现了五种氨基酸——其中三种确定,以及两种不太确定。米勒和尤里,图源:HannaHolbornGray在2007年米勒去世的时候,人们又将最初实验的密封样本进行了重新检测,最终发现了20多种氨基酸,超过了自然界生物遗传密码中可以找到的20种氨基酸。这个实验应该是最常见的解释生命起源的实验,但其实现在的研究早已表明早期地球的大气成分并不是米勒时期认为的甲烷(CH4)、氨(NH3)和氢气(H2)。不管怎么样,米勒-尤里实验能够证明早期提地球的条件确实有助于化学反应的发生,而在他们之前,其实有人已经提出了相似的理论,被称为液滴理论。液滴理论相信生命最先形成的是细胞,因为早期的化学反应的产物更有助于细胞的形成,然后细胞演化出酶,最后得到基因。图:之所以认为是RNA先出现,而不是DNA,其中一个原因是RNA有执行酶的能力与之完全相反的是RNA世界假说,这个假说是由德国科学家曼弗雷德·艾根(ManfredEigen)所提出,他认为生物最早起源于RNA,然后是酶,最后是细胞。无论是RNA世界,还是原始汤,两者都认为生命应该起源于海洋。而另外一个流行的假说,则认为生命实际上起源于温暖粘稠的粘土矿物中,这可以发生在海洋,也可以不是。粘土矿晶体,有助于有机物和金属离子的收集,图源参考1该理论认为,一些黏土矿可以充当细胞的角色,它将有机分子和无机的金属阳离子吸附在上面,代谢在上面发生,最终演化出更复杂的生命。你可能还想知道,地球的生命又是何时出现的呢?其实,这个问题的答案和生命起源的答案是一样的,也没人知道,同样也很可能也永远不会有人知道。不过大部分科学家都认为生命很可能形成于地球液态水出现的时候。由于地球刚形成之初,它非常的炎热,表面温度可能都超过1000摄氏度,地球经历了漫长的降温过程,只有温度降到足够低的时候,液态水才足以存在。现在的一些研究表明,地球最早的液态水可能是在43.5亿年前出现的,而最早的生命很可能就在这个时间诞生。但实际上,这个时期的地球依然非常不稳定,它自身很不稳定,超级火山和地震非常频繁的爆发;太阳系也不是很稳定,在此之后太阳系的行星还经历了一次被称为“后期重轰炸期”的小行星袭击,所有行星都没能幸免。如果这个时间段即便出现了生命,它们可能也无法在这种不稳定的环境中生存下来,而即便它们完全的存活下来,我们也将永远找不到它们存在的信息,因为地球的地质活动至今都十分活跃。关于后期重轰炸期,科学家最早是在月球表面的陨石坑发现相关证据的,因为大部分月球表面的陨石坑都发生的时间基本都是41亿到38亿年前,后面科学家在水星、火星等行星上也发现了相应时间段的重轰证据。图:后期重轰炸期地球可能出现的陨石坑在后期重轰炸期中,地球可能至少会留下5个以上直径大于5000公里的撞击陨石坑,40个以上直径大于1000公里的,以及22000个以上直径大于20公里的。但由于地球活跃的地质活动,这些都已经很难再找到证据了。地球生命的痕迹也一样,那些携带着生命生活过痕迹的岩石一次次被循环到地球内部,在高温高压下,任何信息都被注销了。锆石晶体,了解早期地球和太阳系的重要材料,图源:RobLavinsky锆石晶体是为数不多能够在高温高压下幸存下来的材料,实际上它是人们了解过去地球的重要手段,人们也试图在锆石晶体发现生命的痕迹。但是截止目前,除了发现了40亿年前的锆石晶体上可能是生物过程产生的碳同位素之外,没有任何的直接生命证据。好消息是,地球上目前还保留了一些最古老的岩石——就是格陵兰岛上的伊苏亚上地壳带(ISB)的地层,其历史可以追溯到37亿到38亿年前,所以你会发现那些正在寻找地球早期生命形式的科学家都把目光锁定在了格陵兰岛上。随着气候变暖,格陵兰岛的冰川融化,岩石更多的裸露出来,这个科研带来了一些便携。3.77亿年前的“叠石层” MACMILLIANPUBLISHERLTD.2016年的时候,一组科学家声称在37.7亿年前的岩石上发现了叠层石,是目前已知最古老的生命证据,并将研究成果发表在了《科学》杂志上。叠层石是由微生物组成的垫层(现在的叠层石主要是蓝细菌形成的),它们将沉积物层困在海底的土丘中,随着时间的推移,这些土丘逐渐堆积并钙化。图:现代的叠石层如果发现了叠层石,那么确实意味着发现了古老生命存在的证据,但是和以往所有的生命证据一样,这个证据也存在许多争议。目前,没什么争议的最古老生命证据是来自34.65亿年前的澳大利亚尖燧岩中的微生物微化石,它们是一些厌氧古细菌类。“生命开始于35亿年前”,可能很多人都看过类似的报道,这个信息应该就是来自澳大利亚的这个考古发现。但是这个时间和LUCA的生活时间都相差很远——LUCA预估生活在40亿年前,更别说生命开始于那时了。参考资料:[1].https://doi.org/10.3390/life12020259[2].https://doi.org/10.1126/science.aah7251...PC版:https://www.cnbeta.com.tw/articles/soft/1370297.htm手机版:https://m.cnbeta.com.tw/view/1370297.htm

相关推荐

封面图片

地球上的生命是如何起源的?新技术提供新见解

地球上的生命是如何起源的?新技术提供新见解有人假设,含有尿素(一种对形成核碱基至关重要的有机化合物)的小水坑暴露在这种强烈的辐射下,导致尿素转化为反应产物。这些产物就是生命的组成元素:DNA和RNA。但要进一步了解这一过程,科学家们需要进一步深入研究尿素电离和反应背后的机理,以及反应途径和能量消耗。研究人员利用创新的X射线光谱技术了解了电离的尿素分子可能如何促进了地球生命的起源,从而为原子化学的发展铺平了道路。上图显示了尿素水溶液中两个尿素分子之间光离子化诱导的质子转移。资料来源:LudgerInhester由通讯作者、现任东北大学同步辐射创新智能国际中心(SRIS)副教授的尹中,以及来自日内瓦大学(UNIGE)、苏黎世联邦理工学院(ETHZ)和汉堡大学的同事们组成的国际合作小组,通过一种创新的X射线光谱学方法,揭示了更多的信息。这项技术利用了高次谐波发生光源和亚微米级液体平面喷射器,使研究人员能够以无与伦比的时间精确度检查液体中发生的化学反应。最重要的是,这种开创性的方法使研究人员能够在飞秒级别(即一秒的四万亿分之一)研究尿素分子的复杂变化。Yin说:"我们首次展示了尿素分子在电离后的反应。电离辐射会破坏尿素生物分子。但在消散辐射能量的过程中,尿素经历了一个发生在飞秒时间尺度上的动态过程"。以前对分子反应的研究仅限于气相。为了将这一研究扩展到水环境(即生物化学过程的自然环境),研究小组必须设计一种装置,能够在真空中产生厚度小于百万分之一米的超薄液体射流。较厚的液流会吸收部分X射线,从而妨碍测量。担任首席实验员的殷认为,他们的突破不仅回答了地球上的生命是如何形成的。它还在新颖的原子化学科学领域开辟了一条新途径。"更短的光脉冲是实时了解化学反应和推动attochemistry领域发展所必需的。我们的方法使科学家能够观察分子电影,沿途跟踪这一过程的每一步"。...PC版:https://www.cnbeta.com.tw/articles/soft/1383315.htm手机版:https://m.cnbeta.com.tw/view/1383315.htm

封面图片

科学家发现地球生命的潜在星际起源

科学家发现地球生命的潜在星际起源在地球上出现生命之前,基本的有机分子是由氮、硫、碳和磷等稀缺元素形成的。新的研究表明,富含这些元素的宇宙尘埃可能通过在地球上,特别是在冰原融洞中的高浓度积累,启动了前生物化学,从而有可能导致生命组成元素的形成。资料来源:NASA/JPL-Caltech事实上,生命的基本组成元素是如此稀少,以至于化学反应很快就会耗尽,如果它们真的能够进行的话。地球组成岩石的侵蚀和风化等地质过程也无法确保充足的供应,因为地壳中包含的这些元素实在太少了。尽管如此,在地球历史的前5亿年里,发生了一种前生物化学反应,产生了诸如RNA、DNA、脂肪酸和蛋白质等有机分子,所有生命都是在这些有机分子的基础上诞生的。所需数量的硫、磷、氮和碳从何而来?地质学家、诺米斯研究员克雷格-沃尔顿坚信,这些元素主要是以宇宙尘埃的形式来到地球的。这些尘埃是在太空中产生的,例如当小行星相互碰撞时。即使在今天,每年仍有约3万吨尘埃从太空落到地球上。然而,在地球诞生的早期,尘埃的数量要大得多,每年高达数百万吨。然而,最重要的是,尘埃粒子含有大量的氮、碳、硫和磷。因此,它们有可能引发化学级联反应。然而,灰尘的散布范围很广,在任何一个地方都只能发现极少量的灰尘,这一事实与上述说法相悖。沃尔顿说:"但如果把运输过程包括在内,情况就会不同。风、雨或河流在大范围内收集宇宙尘埃,并以浓缩的形式沉积在某些地方。"澄清问题的新模式为了弄清宇宙尘埃是否可能是启动前生物化学(反应)的源头,沃尔顿与剑桥大学的同事们一起建立了一个模型。研究人员利用该模型模拟了在地球历史的最初5亿年里,有多少宇宙尘埃落到了地球上,以及这些尘埃可能在地球表面的哪些地方积聚。他们的研究现已发表在科学杂志《自然-天文学》上。该模型是与剑桥大学的沉积专家和天体物理学家合作开发的。英国研究人员专门从事行星和小行星系统的模拟研究。模拟显示,早期地球上可能存在宇宙尘埃浓度极高的地方。而且,来自太空的补给源源不断。然而,地球形成后,尘埃雨迅速锐减:5亿年后,尘埃流比零年小了一个数量级。研究人员将偶尔出现的上升高峰归因于小行星碎裂并向地球发送了尘埃尾流。冰原上的融化洞是尘埃陷阱大多数科学家和普通人都认为,地球被岩浆海洋覆盖了数百万年;这将在很长一段时间内阻止宇宙尘埃的迁移和沉积。沃尔顿说:"然而,最近的研究发现,有证据表明地球表面冷却和凝固的速度非常快,并形成了大面积的冰原。"根据模拟结果,这些冰原可能是宇宙尘埃积聚的最佳环境。冰川表面的融化孔--即所谓的冷冻孔--不仅会使沉积物积聚,也会使来自太空的尘粒积聚。随着时间的推移,尘埃粒子中释放出相应的元素。当它们在冰川水中的浓度达到临界值时,化学反应就会自动开始,从而形成有机分子,这就是生命的起源。即使在熔洞冰冷的温度下,化学过程也有可能开始进行。沃尔顿说:"低温并不会破坏有机化学,相反,低温下的反应比高温下的反应更有选择性和特异性。其他研究人员已经在实验室中证明,简单的环形核糖核酸(RNA)会在冰点附近的温度下自发地在这种融水汤中形成,然后进行自我复制。该论点的一个弱点可能是,在低温条件下,形成有机分子所需的元素只能非常缓慢地从尘埃粒子中溶解出来。"启动关于生命起源的辩论沃尔顿提出的理论在科学界并非没有争议。这项研究肯定会引发一场有争议的科学辩论,但它也会引发关于生命起源的新观点。早在18和19世纪,科学家们就确信陨石将沃尔顿所说的"生命元素"带到了地球。即使在当时,研究人员也在来自太空的岩石中发现了大量这些元素,但在地球的基岩中却没有发现。沃尔顿说:"然而,从那时起,几乎没有人考虑过前生物化学主要是由陨石引发的这一观点。"沃尔顿解释说:"陨石的想法听起来很有吸引力,但有一个问题。一块陨石只能在有限的环境中提供这些物质;陨石撞击地面的位置是随机的,而且无法保证进一步的供应。我认为,生命的起源不太可能依赖于几块广泛而随机散落的岩石。"另一方面,我认为富集的宇宙尘埃是一个可信的来源。"沃尔顿的下一步将是通过实验检验他的理论。在实验室中,他将使用大型反应容器来重现原始熔洞中可能存在的条件,然后将初始条件设定为40亿年前低温熔洞中可能存在的条件,最后再观察是否真的发生了产生生物相关分子的化学反应。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1428240.htm手机版:https://m.cnbeta.com.tw/view/1428240.htm

封面图片

照亮生命的起源:研究人员揭示远古地球上的糖合成过程

照亮生命的起源:研究人员揭示远古地球上的糖合成过程戊糖是现代生命形式新陈代谢中不可或缺的碳水化合物,但由于这些分子不稳定,因此尚不清楚它们在地球早期是否存在。日本东京工业大学地球生命科学研究所(ELSI)领导的一项新研究揭示了一种与早期地球条件相适应的化学途径,通过这种途径,C6醛酸酯可以作为戊糖的来源,而不需要酶。他们的发现提供了原始生物化学的线索,使我们更接近了解生命起源。一项新研究提供了有关原始生物化学的线索,使我们更接近于了解生命的起源。图片来源:美国宇航局戈达德太空飞行中心概念图像实验室地球早期的生化挑战地球上的生命是从简单的化学物质中产生的,这是生物化学乃至整个科学领域最令人兴奋而又最具挑战性的课题之一。现代生命形式可以通过复杂的化学网络将营养物质转化为各种化合物;此外,它们还可以利用酶催化非常特殊的转化,从而实现对所产生分子的精细控制。然而,在生命出现并变得更加复杂之前,酶是不存在的。因此,在地球历史的早期,很可能存在着各种非酶化学网络,它们可以将环境中的营养物质转化为支持原始细胞功能的化合物。戊糖:早期生命的基石戊糖的合成就是上述情况的一个突出例子。这些只含有五个碳原子的单糖是RNA和其他分子的基本组成单位,而这些分子对我们所知的生命来说是必不可少的。科学家们提出并研究了生命起源之前产生戊糖的各种方式,但目前的理论提出了一个问题:如果这些化合物的寿命极短,那么戊糖如何积累到足以参与生命起源前反应的数量?为了解决这个问题,由ELSI研究员易瑞琴领导的研究小组最近开展了一项研究,为早期地球上戊糖的起源和持续供应寻找另一种解释。他们探索了一个无酶化学网络,在这个网络中,C6醛酸酯(一种稳定的六碳碳水化合物)从各种前生物糖源积累起来,然后再转化回戊糖。(a)导致醛酸酯积累的原生代谢戊糖拟议途径,然后是非选择性氧化成脲酸酯、羰基迁移和β-脱羧。(b)磷酸戊糖途径的前几个步骤,以作比较。戊糖合成的新途径所提出的化学途径以葡萄糖酸盐开始,这是一种稳定的C6醛酸酯,在地球早期通过已知的基本糖类的前生物转化很容易获得。下一步是将C6醛酸酯非选择性地氧化成脲酸酯;这里的"非选择性"是指氧化过程不区分醛酸酯结构中的各种碳原子,因此有五种可能的氧化结果。通过实验和理论分析,研究人员深入研究了各种氧化产物,以弄清反应网络的细节。有趣的是,他们发现,无论氧化发生在哪里,生成的尿酸盐化合物都会发生一种被称为"羰基迁移"的分子内转化,直到形成特定的3-oxo-URONATE化合物。一旦达到这种状态,在H2O2和亚铁催化剂的作用下,3-氧代-尿苷酸盐很容易通过β-脱羧转化为戊糖,而这两种物质都与早期地球的条件相符。在建立并测试了这一复杂反应网络的全部过程后,研究人员注意到它与现代生化途径有着重要的相似之处。领衔作者易瑞勤强调说:"我们证明了五碳糖的非酶合成途径,它依赖于化学转化,让人联想到磷酸戊糖途径的第一步,而磷酸戊糖途径是新陈代谢的核心途径。这些结果证明,前生物的糖合成可能与现存的生化途径有重叠。鉴于糖类在现代新陈代谢中无处不在,所提出的反应网络可能对第一批类生命系统的出现非常重要。"天体生物学影响和未来研究本研究的发现对天体化学和天体生物学具有重要意义。在1969年坠落地球的著名碳质陨石默奇森(Murchison)陨石中发现了大量的醛酸酯。与此相反,在现代生物系统中发现的典型碳水化合物却不在其中。这意味着醛酸酯可以在地外条件下形成和积累,而本研究表明,它们可能在生命组成元素的起源过程中扮演重要角色。Yi补充说:"我们希望这项工作能掀起下一波天体生物学的热潮,将重点放在醛糖的研究上。"在未来的研究中,研究小组将重点关注C6醛酸酯是否能在地球早期积累到足够的量,以作为原生代谢出现的"养分"。首席研究员易瑞琴总结道:"我们希望进一步了解这些醛酸酯如何从经典的前生物糖反应中生成,如甲糖反应和基里亚尼-费舍尔同源反应。值得注意的是,这些经典的前生物糖反应在现代新陈代谢中并不存在,因此,所提出的非酶途径可以作为早期糖类和理论上最早的生命形式所使用的碳水化合物之间一座急需的桥梁。"...PC版:https://www.cnbeta.com.tw/articles/soft/1401995.htm手机版:https://m.cnbeta.com.tw/view/1401995.htm

封面图片

小行星“龙宫”提供了关于地球上生命起源的线索

小行星“龙宫”提供了关于地球上生命起源的线索隼鸟2号于2020年12月将其地外有效载荷送至地球,这是在小行星上的两次着陆行动中收集的共计0.2盎司(5.4克)的原始样本。之前对这些样本的分析发现了有史以来最古老的物质。现在,这颗太空岩石已经交出了它的更多秘密。由日本北海道大学领导的一个国际研究小组使用高效液相色谱法结合电喷雾离子化高分辨率质谱法(HPLC/ESI-HRMS)分析了这些样品。这种强大的工具允许对复杂的物质进行分子水平的分析,特别是核碱,这正是研究人员特别要寻找的东西。核碱基是一种含氮的化合物,可以形成核苷,是核苷的一个组成部分,而核苷又是DNA和RNA的一部分。DNA中的核碱基是胞嘧啶、鸟嘌呤、腺嘌呤和胸腺嘧啶。尿嘧啶存在于RNA中,它为构建生物体提供指令。这五个核碱基被称为"经典",因为它们是遗传密码的基本单位。该研究的第一作者YasuhiroOba说:"科学家们以前在某些富含碳的陨石中发现了核碱基和维生素,但始终存在着暴露在地球环境中的污染问题。由于隼鸟2号航天器直接从小行星龙宫收集了两个样本,并将它们装在密封的胶囊中运送到地球,因此可以排除污染的可能性。"研究人员认为,如果被发现,核碱将使人们更好地了解它们在前生物进化中的作用,这个阶段的进化被认为是在地球上出现生命之前发生的。对小行星样本的分析显示,除了烟酸-维生素B3的一种形式和其他含氮有机化合物之外,还存在尿嘧啶。Oba说:"我们在样品中发现了少量的尿嘧啶,范围在6到32ppb之间,而维生素B3的含量更高,范围在49到99ppb之间。在样品中还发现了其他生物分子,包括一些氨基酸、胺和羧酸,它们分别存在于蛋白质和新陈代谢中。"研究人员发现的化合物与以前在陨石中发现的化合物相似,但不完全相同。研究人员假设,这些含氮化合物可能是由更简单的分子形成的,如氨、甲醛和氰化氢。虽然这些分子没有在龙宫样本中检测到,但它们存在于彗星上发现的冰中。研究人员认为龙宫可能起源于低温环境,如彗星或其他行星体。这些发现为地球上的生命进化史带来了更多的启示,特别是RNA在其中所扮演的角色。在来自龙宫的样本中发现了尿嘧啶,这为目前关于早期地球上核碱基来源的理论提供了力量。研究小组希望将他们的结果与美国宇航局的探索飞船OSIRIS-REx收集的样本进行比较,这些样本将于2023年9月交付给地球。OSIRIS-REx在2020年被派去收集另一颗碳质小行星101955Bennu的样品。"美国宇航局的OSIRIS-REx任务将在今年从小行星Bennu返回样本,对这些小行星的组成进行比较研究将为建立这些理论提供进一步的数据,"Oba说。这项研究发表在《自然通讯》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1350913.htm手机版:https://m.cnbeta.com.tw/view/1350913.htm

封面图片

生命的甜蜜火花:揭开地球上第一批糖类的源头

生命的甜蜜火花:揭开地球上第一批糖类的源头他们假设,创造原始生命形式所需的基本糖类可能是与乙醛酸(C2HO3-)反应的结果,乙醛酸是一种相当基本的化学物质,在生命演化之前似乎就存在于地球上。斯克里普斯研究所化学系教授RamanarayanKrishnamurthy博士说:"我们表明,我们的新假说与更传统的观点相比具有关键的优势,即早期糖类产生于化学品甲醛。"Krishnamurthy的合著者是佐治亚理工学院化学和生物化学学院的名誉执政官教授CharlesLiotta博士。生命起源化学家试图解释生命所需的基本分子构件和反应是如何从"前生物"地球上可能存在的简单化学品中产生的。该领域的总体目标是回答我们的生命星球是如何形成的这个基本问题。但是它的发现也可以为许多其他领域提供信息,并且已经为这些领域提供了信息,从大气科学和地质学到合成生物学和寻找其他星球上的生命。需要用生命起源化学来解释的三大类生物分子是构成蛋白质的氨基酸,构成DNA和RNA"字母"的核碱,以及在整个生物学中发现的糖类(也称为碳水化合物),包括DNA和RNA的扭曲骨架结构。根据普遍的理论,氨基酸可能来自于氨(NH3),而核碱则来自于氰化氢(HCN)。糖类在地球的起源一直不太清楚。许多科学家认为最早的糖类来自涉及甲醛(CH2O)的反应,但这种理论有一些缺点。Liotta说:"这一理论提出的甲醛反应是相当混乱的--由于甲醛在设想的早期地球条件下的高反应性,它们有不受控制的副反应和其他缺点。"化学家们提出的替代方案是"乙醛反应",其中乙醛首先与自身发生反应,形成一种被称为乙醛的甲醛近亲。研究人员建议,乙醛、乙二醇、它们的副产品和其他简单的化合物可以继续相互反应,最终产生单糖和其他产品--而没有基于甲醛的反应的缺点。乙醛酸在生命起源化学理论中已经有了突出的作用。瑞士化学家AlbertEschenmoser在2007年提出,它的一种形式可能是多种原始生物分子的来源。Krishnamurthy和弗曼大学化学家GregSpringsteen博士也在2020年的《自然化学》论文中提出,乙醛酸可能帮助启动了现代(三羧酸)TCA循环的原始版本,这是地球上大多数生命形式的基本代谢过程。Krishnamurthy和他的团队目前正努力在实验室中证明,糖醛酸反应的情况确实可能产生了第一批糖。他说:"这样的证明将扩大乙醛糖作为前生物化学中的一个多功能分子的作用,并进一步刺激寻找它自己在前生物地球上的起源。"化学家们还在研究制造乙醛酸的反应的潜在商业应用,因为这些反应有效地消耗二氧化碳,因此可以用来降低二氧化碳水平,无论是在工业环境中的局部还是在全球范围内对抗全球变暖。...PC版:https://www.cnbeta.com.tw/articles/soft/1366229.htm手机版:https://m.cnbeta.com.tw/view/1366229.htm

封面图片

新设计的实验可能可以证实生命的成分是如何在外太空形成的

新设计的实验可能可以证实生命的成分是如何在外太空形成的为了测试这一假设,研究人员开始了一项首创的实验,以观察伽马射线是否真的能创造出氨基酸,即生命的构成要素。科学家们长期以来一直认为,在火星和其他行星上可以找到这些构成材料,而地球只是宇宙中它们学会了繁衍的许多地方之一。利用该实验,研究人员能够确定伽马射线能够在空间岩石,如小行星和彗星内锻造出生命的成分。那么,这些结果只是展示了这些构件可能来自的一个地方,这可能为我们提供了研究地球上生命起源信息的新途径。这些构件在太空中出现的可能性并不新鲜,许多人长期以来一直认为,小行星、陨石和其他源自太空的岩石帮助将生命的构件带到了我们的星球。对于这种可能的生命起源,已经爆发了无数的神话和信仰。这项研究发表在ACS中央科学杂志上,它表明生命的成分有一个完全合适的环境,当它们暴露在伽马射线下时可以转化为氨基酸。这指出了科学家所谓的有助于生命起源的形成途径,研究人员还对所需的伽马射线是否能由衰变的放射性原子产生进行了实验。这些发现可以为我们研究地球上生命的起源打开新的大门。研究人员希望在未来以新的方式建立这项研究,并最终证明生命的成分如何在太空中起源。...PC版:https://www.cnbeta.com.tw/articles/soft/1334969.htm手机版:https://m.cnbeta.com.tw/view/1334969.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人