天文学家在古星系中心检测到长伽马射线爆发

天文学家在古星系中心检测到长伽马射线爆发一个国际天文学家小组在一个古老的星系中发现了一次长伽马射线爆发,这可能是由两颗独立的中子星合并引起的,这挑战了对此类爆发原因的传统理解。该团队使用多台望远镜分析了2019年的爆发,尽管考虑了其他潜在原因,但他们希望未来的观测能够澄清该现象的起源。过去普遍的共识是,只有当一颗非常重的恒星在其生命末期塌缩成超新星时,才会发生至少几秒钟的长伽马射线爆发。2022年,当两颗一生都互相绕转的大恒星最终变成中子星并碰撞成千新星时,发现了长伽马射线爆发的第二个潜在触发因素。现在到了2023年,长伽马射线暴似乎可以以第三种方式发生。“我们的数据表明,这是两颗独立的中子星合并的情况。因此,中子星并不是一生都在一起的。”首席研究员安德鲁·莱文(拉德堡德大学)说道。“我们怀疑中子星是被银河系中心许多周围恒星的引力推到一起的。”研究小组研究了尼尔·盖尔斯·斯威夫特天文台于2019年10月19日观测到的伽马射线爆发的后果。他们使用智利的双子座南望远镜、加那利拉帕尔马岛的北欧光学望远镜和哈勃太空望远镜。他们的观察表明,爆发是在一个古老星系中心附近引起的。这提供了两个指向两个来源合并的论据。第一个论点是,古代星系中几乎不存在可以塌缩成超新星的重恒星,因为重恒星通常出现在年轻星系中。此外,超新星会发出明亮的可见光,这在本例中没有被观察到。第二个论点是星系中心是繁忙的地方。有数十万颗普通恒星、白矮星、中子星、黑洞和尘埃云都围绕着超大质量黑洞运行。总共代表了超过1000万颗恒星和天体挤在几光年宽的空间中。“这个区域相当于我们的太阳和下一颗恒星之间的距离,”莱文解释道。“因此,在星系中心发生碰撞的可能性比我们所在的郊区高得多。”研究人员仍在为其他解释留下空间。长时间的伽马射线爆发也可能是由于中子星以外的致密天体(例如黑洞或白矮星)的碰撞造成的。未来,研究人员希望能够在引力波的同时观测长伽马射线爆发。这将帮助他们对辐射的来源做出更明确的陈述。...PC版:https://www.cnbeta.com.tw/articles/soft/1370397.htm手机版:https://m.cnbeta.com.tw/view/1370397.htm

相关推荐

封面图片

天文学家发现恒星死亡的新方式:碰撞

天文学家发现恒星死亡的新方式:碰撞我们已经知道,恒星可以相互吞噬,从对方身上撕扯出能量和物质,直到只剩下残渣。但是现在,天文学家已经发现了恒星之间的碰撞实际上也能引发恒星的死亡。新的证据可以在《自然-天文学》上发表的一篇论文中找到,表明伽马射线暴可以由恒星碰撞产生。伽马射线暴动画来自NASA图片来源:NASAGoddard/YouTubeNASA戈达德/YouTube这些证据是利用智利的GaminiSouth望远镜和北欧光学望远镜,以及NASA的哈勃太空望远镜发现的。天文学家利用这些望远镜对Swift天文台在2019年发现的伽玛射线暴进行了回访。这些爆发被命名为GRB191019A,时间很长,持续了一分钟还多。研究人员设法找到了爆发的源头,在一个古老星系的核心深处,离核心大约100光年的地方。基于这些观察,天文学家认为,两个紧凑物体的碰撞导致了伽马射线暴的产生,而且它不仅仅是一颗大质量恒星的坍缩。相反,两颗恒星的死亡似乎为伽马射线暴提供了动力。这一发现特别吸引人,因为这个星系是如此古老,大多数足以在产生伽马射线的超新星中死亡的巨大恒星早已死亡。因此,当这个爆发将他们带回那个特定的星系时,天文学家们感到很困惑。然而,这个新的证据确实突出了一个可怕的现实--即使是恒星碰撞也会导致大质量恒星的死亡,并且这在未来可能会对其他恒星系统造成破坏。...PC版:https://www.cnbeta.com.tw/articles/soft/1367801.htm手机版:https://m.cnbeta.com.tw/view/1367801.htm

封面图片

天文学家分析中子星合并过程 揭开宇宙重元素诞生的原理

天文学家分析中子星合并过程揭开宇宙重元素诞生的原理这次大爆炸释放出了一个伽马射线暴--GRB230307A,是50年观测中第二亮的伽马射线暴,比一般的伽马射线暴亮1000倍左右。GRB230307A于2023年3月7日首次被美国宇航局的费米伽马射线太空望远镜探测到。科学家们利用多台太空和地面望远镜,包括美国国家航空航天局(NASA)的詹姆斯-韦伯太空望远镜(JamesWebbSpaceTelescope)--有史以来发射到太空的最大、最强大的望远镜--能够在天空中精确定位伽马射线暴的源头,并追踪其亮度的变化情况。根据收集到的信息,研究人员确定这次爆发是两颗中子星在距离地球10亿光年的星系中合并形成千新星的结果。研究人员观察到了碲的证据,碲是地球上最稀有的元素之一。这一突破性发现使天文学家离解开比铁更重的元素的起源之谜又近了一步。"我是一名高能天体物理学家。我喜欢爆炸。我喜欢爆炸产生的伽马射线。但我也是一个真正关心基本问题的天文学家,比如重元素是如何形成的,"哈特曼说。克莱姆森大学物理和天文学系教授迪特尔-哈特曼。资料来源:克莱姆森大学伽马射线暴(GRBs)是伽马射线光的爆发,是光中能量最高的一种,持续时间从几秒到几分钟不等。最早的伽玛射线暴是在20世纪60年代由用于监测核试验的卫星探测到的。全球红外探测器的成因各不相同。长持续时间的全球记录光暴发是由超新星引起的,超新星是指一颗大质量恒星到达其生命尽头并爆发出光的时刻。持续时间较短的古雷暴是由两颗中子星合并(称为千新星)或一颗中子星和一个黑洞合并产生的。虽然GRB230307A只持续了200秒,但科学家们看到余辉的颜色从蓝色变成了红色,这是千新星的特征。"爆发本身实际上表明这是一个持续时间很长的事件,它应该是一个正常的超新星类型。但它有不寻常的特征。它不太符合长爆发的模式,"哈特曼说。"事实证明,这个放射性云团,这个千新星余辉,其中有所有这些核合成指纹,是双星合并的特征。令人兴奋的是,我们利用韦伯望远镜识别出了一种化学指纹,我们原本以为这种指纹会出现在短爆发中,但却在长爆发中看到了它。"哈特曼说,宇宙大爆炸产生了氢和氦。所有其他元素都是由恒星和星际介质中的过程产生的。"有些恒星的质量大到足以爆炸,它们会把这些物质送回气态环境,然后再制造新的恒星。因此,宇宙中存在着一种循环,它使我们的碳、氮、氧以及我们所需的所有物质变得更加丰富,我们称恒星为宇宙的大锅。"热核反应或聚变使恒星闪闪发光,这导致了更多重元素的相继产生。他说,轮到铁的时候,就没有多少能量可以挤出来了。那么,金和铀等重元素从何而来?"重元素有着特殊的起源。主要有两个过程。一个叫做快速过程,另一个叫做慢速过程。哈特曼说:"我们认为r过程发生在那些中子星合并中。"理论建模表明千新星当中应该产生碲,但詹姆斯-韦伯太空望远镜探测到的光谱线提供了实验证据。光谱线是连续光谱中的一条暗线或亮线。它是由原子或离子内部的跃迁产生的。哈特曼说:"我们认为这是一个相当可靠的鉴定,但并不能够像法庭上所说的那样排除合理怀疑。"研究的详细结果见科学杂志《自然》上发表的题为"JWST观测到的紧凑天体合并中的重元素生成"的论文:https://www.nature.com/articles/s41586-023-06759-1编译自:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1422941.htm手机版:https://m.cnbeta.com.tw/view/1422941.htm

封面图片

天文学家发现一次神秘的宇宙爆炸 挑战学界对宇宙的理解

天文学家发现一次神秘的宇宙爆炸挑战学界对宇宙的理解DanieleBjørnMalesani当时正在使用加那利岛拉帕尔马岛的北欧光学望远镜对一个名为GRB211211A的伽马射线暴进行例行跟踪观测。在收到由监测天空中伽马射线暴的航天器"尼尔-盖尔斯-斯威夫特天文台"自动触发的短信后,这是一个标准程序。哈勃太空望远镜对伽玛射线暴GRB211211A的位置及其周围环境的视角。放大图显示了爆发的余辉,这是用夏威夷的双子座北望远镜观察到的。引起爆发的双星系统很可能是在过去从其左侧的大蓝星系中喷射出来的。资料来源:国际双子座天文台/NOIRLab/NSF/AURA/M.Zamani;NASA/ESA马莱萨尼是荷兰拉德堡大学的一名天文学家,也是哥本哈根宇宙曙光中心的客座研究员。他从事伽马射线暴的观察,这是宇宙中能量最强的爆炸。但要了解什么是不正确的,首先让我们看看什么是"伽马射线暴"。伽马射线暴是最有能量的光的短暂和超亮的闪光,即伽马射线。它们大多在非常遥远的宇宙中被探测到,通常分为两类,被认为是由两种不同的物理情景产生的。"长"爆发通常持续几秒钟到几分钟,但往往伴随着能量较低的光的更持久的余辉。它们出现在星系中最多的恒星形成区域,被认为是一颗大质量的恒星坍缩成一颗紧凑的中子星或黑洞,在一次巨大的爆炸中喷射出其外部部分,类似于超新星。北欧光学望远镜位于拉帕尔马的2400米高的山顶RochedelosMuchachos。资料来源:PeterLaursen(宇宙曙光中心)"短"爆发甚至更加短暂,典型的持续时间为1/10到1秒。它们经常被看到偏离星系中心,甚至是在星系之外。普遍的理论是,它们是两颗大质量恒星在"双星"系统中相互环绕的结果。在某些时候,它们作为超新星爆炸,把它们踢出了它们的主星系。然而,最终,这两个物体会螺旋式上升并合并,导致伽马射线暴。在这两种情况下,所释放的能量都是令人震惊的。在它们的高峰期,它们的光芒可以和可观测到的宇宙中所有的恒星加起来一样亮(假设它们在各个方向上发出的光是一样的;实际上,它们很可能在某种程度上不那么亮,但在狭窄的喷流中发出大部分的光,我们恰好在这个方向上)。伽马射线暴最早是在1967年由Vela卫星发现的,该卫星是为了监测天空中可能的核武器试验而建造的,这将是对1963年《禁止核试验条约》的违反。最初被认为是来自我们银河系内的附近来源,在20世纪90年代,更敏感的空间观测站发现,它们必须来自银河系以外的地方,分布在整个宇宙中。伽马射线暴的瞬时性使它们难以研究,但从20世纪90年代末开始,天文学家已经能够探测到它们能量较小的余辉,从X射线到光学,再到红外线,帮助建立了它们的起源理论。伽马射线暴有两个版本,"短"和"长",到目前为止,人们认为它们是由两种不同的物理机制产生的,即两个紧凑物体的合并和一个大质量恒星的坍缩,分别。随着新的观测结果,这一理论现在受到了挑战。那么,马莱萨尼观察到的爆发,即GRB211211A的问题是什么?它似乎两者都不符合。"观测结果显示,该爆发起源于一个典型的承载短波的星系之外。但这不是一毫秒或几秒钟,而是持续了将近一分钟,"Malesani说。这个奇特的事件促使一个国际天文学家小组,在美国西北大学的JillianRastinejad的领导下,开始了一个密集的活动来研究这个令人惊讶的物体。这些努力导致完全出乎意料地发现了一个所谓的千新星,这是两个中子星,或者一个中子星和一个黑洞碰撞的烟幕证据。双中子星合并被广泛认为是短伽马射线暴的始作俑者。为什么这一次反而出现了一个长的爆发,这让天文学家们感到困惑。千新星被认为是创造重元素的主要机制,如贵重的银、金和铂,放射性的钚和铀,以及其他许多元素。与物理学中的情况一样,千新星星是长伽马射线暴的原因的确切证据并不存在。然而,当天文学家对他们的解释充满信心,这是由几种情况支持的。宇宙曙光中心的教授和该研究的参与者JohanFynbo解释说。"爆发的余辉显示了与千新星星相一致的颜色和特征,这在任何其他类型的天体中都没有看到过。此外,我们不会期望在一个星系之外看到一颗坍缩的恒星,因为走这么远的路需要数亿年,而大质量恒星的坍缩时间尺度不到1000万年。"但是原则上,GRB211211A可能是一个微弱的或有灰尘的、未被发现的星系内的一颗塌缩星,尽管哈勃的图像确实非常深,应该看到这一点。Fynbo说:"用智利更敏感的ALMA射电望远镜或JamesWebb太空望远镜进行后续观测,将能够解决这个问题。"如果这个解释被证明是正确的,它不仅为千新星形成重元素开辟了一个令人兴奋的新机制。这也是在长爆发的位置寻找新的千新星的强大动力。"对我们来说,千新星是一个相对较新的、未被探索的现象;到今天为止,我们只探测到几个,"丹尼尔-比约恩-马莱萨尼解释说。"因为我们没有想到它们会与长爆发有关,所以我们没有在那里寻找它们,但是现在我们知道,大自然比我们以前想象的更有办法"。从2006年的一项研究中,三位天文学家得到了一个暗示,即碰撞的中子星可能能够保持其引擎活跃的时间超过几秒钟。但是在没有探测到千新星的情况下,证据一直是混乱的。一种理论认为,崩溃的中子星可能旋转得如此之快--在光速的相当大的一部分--以至于离心力可以维持合并后的物体一小段时间,并推迟其黯淡的命运。未来对更多来自千新星的长爆发的观测将告诉我们更多关于这个令人兴奋的现象。...PC版:https://www.cnbeta.com.tw/articles/soft/1339537.htm手机版:https://m.cnbeta.com.tw/view/1339537.htm

封面图片

不是黑洞:天文学家可能需要重新思考伽玛射线暴是如何形成的

不是黑洞:天文学家可能需要重新思考伽玛射线暴是如何形成的一种叫做短时GRB的GRB是在两颗中子星碰撞时产生的。这些超密集的恒星其质量相当于我们的太阳,被压缩到比一个城市还要小,在其最后时刻触发GRB之前,在时空中产生称为引力波的涟漪。到目前为止,空间科学家们基本上同意为这种高能和短暂的爆发提供动力的"引擎"必须总是来自一个新形成的黑洞。然而,由英国巴斯大学的NuriaJordana-Mitjans博士领导的一个国际天体物理学家团队的新研究正在挑战这一科学正统观念。根据该研究的发现,一些短时的GRB是由超大质量星(又称中子星残余物)的诞生引发的,而不是黑洞。Jordana-Mitjans博士说。"这样的发现很重要,因为它们证实了新生的中子星可以为一些短时间的GRB提供动力,以及伴随着它们被探测到的跨电磁波谱的明亮发射。这一发现可能为定位中子星合并提供了一种新的方法,从而在我们搜索天空中的信号时找到引力波发射器。"相互竞争的理论关于短时的GRB,人们知道的很多。它们的生命开始于两颗中子星,它们一直在螺旋式地接近,不断地加速,最后碰撞。而从坠毁地点,一个喷射性的爆炸释放出伽马射线辐射,从而形成GRB,随后是一个较长的余辉。一天后,在爆炸过程中向四面八方排出的放射性物质产生了研究人员所说的千新星。然而,在两颗中子星相撞后究竟剩下什么?是碰撞的"产物"-并因此成为赋予GRB非凡能量的动力源,一直是一个争论不休的问题。由于巴斯领导的研究发现,科学家们现在可能更接近于解决这一争论。空间科学家们在两种理论之间存在分歧。第一种理论认为,中子星合并后短暂地形成了一颗质量极大的中子星,只是这颗星随后在几分之一秒内坍缩成一个黑洞。第二种理论认为,两颗中子星会形成一颗不那么重的中子星,其寿命更长。因此,几十年来一直困扰着天体物理学家的问题是:短时的GRB是由黑洞驱动还是由长寿命的中子星诞生驱动?迄今为止,大多数天体物理学家都支持黑洞理论,认为要产生GRB,就必须让大质量的中子星几乎瞬间坍缩。电磁信号天体物理学家通过测量产生的GRB的电磁信号来了解中子星碰撞的情况。源自黑洞的信号预计会与来自中子星残余物的信号不同。在这项研究中探索的GRB(被命名为GRB180618A)的电磁信号使Jordana-Mitjans博士和她的合作者清楚地认识到,一定是中子星残余物而不是黑洞引起了这个爆发。Jordana-Mitjans博士在阐述时说:"我们的观测首次突出了来自一颗幸存的中子星的多个信号,这颗中子星在最初的中子星双星死亡后至少生存了一天。"研究报告的共同作者、巴斯大学银河系外天文学教授CaroleMunDELL教授说,她在巴斯大学担任银河系外天文学的HirokoSherwin客座教授。"我们很高兴能捕捉到这个短伽马射线暴的早期光学光线--如果不使用机器人望远镜,这在很大程度上还是不可能做到的。但是当我们分析我们的数据时,惊讶地发现我们无法用GRB的标准快速坍缩黑洞模型来解释它。我们的发现为即将到来的用鲁宾天文台LSST等望远镜进行的天空调查带来了新的希望,用这些望远镜可能会发现数十万颗这样的长寿命中子星在坍缩成为黑洞之前发出的信号。"消失的余辉最初让研究人员感到困惑的是,GRB180618A之后的余辉的光学光线在短短35分钟后就消失了。进一步的分析表明,由于某种持续的能量来源从后面推动它,导致负责如此短暂发射的物质正在以接近光速的速度膨胀。"我们的发现为即将到来的用鲁宾天文台LSST等望远镜进行的天空调查带来了新的希望,用这些望远镜我们可能会发现数十万颗这样的长寿命中子星在坍缩成为黑洞之前发出的信号。"更令人惊讶的是,这种发射有一个新生的、快速旋转的和高度磁化的中子星的印记,称为毫秒级磁星。研究小组发现,GRB180618A之后的磁星在放慢速度的同时,正在重新加热撞击后的剩余物质。在GRB180618A中,磁星驱动的光学发射比经典千新星的预期亮度要高一千倍。...PC版:https://www.cnbeta.com.tw/articles/soft/1338209.htm手机版:https://m.cnbeta.com.tw/view/1338209.htm

封面图片

发现宇宙进化的线索:天文学家测量伽马射线爆发的隐藏能量

发现宇宙进化的线索:天文学家测量伽马射线爆发的隐藏能量伽马射线暴GRB191221B的艺术家印象。资料来源:Urata等人/Yu-SinHuang/MITOS科学有限公司伽玛射线暴不仅释放伽玛射线,还释放无线电波、光学光和X射线。当爆炸能量转换为发射能量的效率很高时,爆炸的总能量可以通过将所有发射的能量相加来确定。然而,当转换效率低或不确定时,只测量发射的能量不足以计算出总的爆炸能量。现在,一个天体物理学家小组通过利用光的偏振作用成功地测量了伽马射线暴的隐藏能量。该小组由来自国立中央大学和MITOS科学有限公司的YujiUrata博士和来自东北大学跨学科前沿研究所(FRIS)的KenjiToma教授领导。他们发现的细节最近发表在《自然-天文学》杂志上。当一个电磁波被极化时,这意味着该波的振荡向一个方向流动。虽然从恒星发出的光是不偏振的,但该光的反射是偏振的。许多日常用品,如太阳镜和遮光板,都是利用偏振来阻挡统一方向的光线的眩光。测量偏振的程度被称为偏振测量法。在天体物理观测中,测量一个天体的偏振度并不像测量其亮度那样容易。但是它提供了关于天体物理条件的宝贵信息。该小组研究了发生在2019年12月21日的伽马射线暴(GRB191221B)。利用欧洲南方天文台的甚大望远镜和阿塔卡马大型毫米/亚毫米阵列--世界上最先进的一些光学和射电望远镜--他们计算了来自GRB191221B的快速衰减发射的极化。然后他们成功地同时测量了光学和无线电偏振,发现无线电偏振度明显低于光学偏振度。Toma说:"这种在两个波长上的偏振差异揭示了伽玛射线暴发射区域的详细物理条件。特别是,它使我们能够测量以前无法测量的隐藏能量。"当考虑到隐藏的能量时,研究小组发现总能量比以前的估计大了大约3.5倍。由于爆炸能量代表了原生星的引力能量,能够测量这个数字对于确定恒星的质量具有重要的影响。Toma补充说:"知道对原生星真实质量的测量将有助于理解宇宙的进化历史。如果我们能够探测到它们的长伽马射线暴,就可以发现宇宙中的第一颗恒星"。...PC版:https://www.cnbeta.com.tw/articles/soft/1342009.htm手机版:https://m.cnbeta.com.tw/view/1342009.htm

封面图片

超越可见光 天文学家揭开伽马射线暴的秘密

超越可见光天文学家揭开伽马射线暴的秘密质量超过太阳十倍的恒星会发生大爆炸,变成黑洞,并伴随着可通过太空望远镜探测到的短暂而不可预测的伽马射线暴。对这些爆发及其相关光学辐射的详细研究,如2021年的GRB210619B所见,为了解这些恒星爆炸的运作及其产生的条件提供了宝贵的数据。当恒星的质量超过太阳质量的10倍时,这种情况就会导致内核收缩,外壳爆炸性破裂。这将导致银河系规模的超强爆炸。质量最大的恒星就是这样变成黑洞的。这些爆炸伴随着强烈的伽玛射线暴--一种光子流,其能量比我们熟悉的可见光量子大几百万倍。伽马射线暴是一个极其短暂的事件,持续时间从几分之一秒到几百秒不等,而且无法预测。我们无法预测伽马射线暴在天空中的准确位置和准确时间。此外,由于地球大气层会阻挡伽马射线辐射,伽马射线暴只能通过太空望远镜探测到。伽马射线暴从20世纪60年代末开始被记录。多年来,科学家们只记录到人眼看不到的伽马射线辐射。然而,有人认为这些伽马射线暴可能伴随着从地球上可以观测到的光学辐射。事实上,1999年1月23日首次观测到了这种辐射。为了能够快速探测到光学辐射,科学家们开发了机器人望远镜,能够直接从爆发地点收集实时数据。2021年6月20日,位于捷克共和国和西班牙的望远镜以及位于北高加索地区、由喀山联邦大学拥有的俄罗斯Mini-MegaTORTORA系统观测到了GRB210619B,这是迄今为止记录到的最强大的伽马射线暴之一。这些望远镜在伽马射线闪光28秒后开始记录发光余辉。通过三台望远镜同时获取的数据,可以重建光曲线的整体形状、不同时间的光学光谱斜率以及光学辐射的早期多波段演变。"我们很幸运。首先,我们观测到了相当明亮的余辉。其次,我们通过频繁捕捉图像,以高时间分辨率观测到了余辉。第三,我们获得了有关光辐射光谱的信息。在Mini-MegaTORTORA系统中,我们可以同时使用一组光学滤光片进行观测,包括蓝色和可见光(黄绿色)。换句话说,我们不仅测量了整体亮度,还测量了特定单色显示的亮度。"这项研究的合著者、HSE物理系副教授AntonBiryukov说:"这是一个罕见的、几乎独一无二的案例。"有了包括光学范围在内的各种波段辐射的详细数据,就有可能确定与光学辐射起源区域的伽马射线暴相关介质的物理参数。"研究小组获得的大量数据集使我们能够研究伽马射线暴现象的内部运作。科学家解释说:"这就好比用外科手术解剖伽马射线暴,窥探其内部机制:检查运动中的粒子、粒子的能量水平、周围介质的密度以及相关磁场的特征。"研究报告的作者得出结论,在伽马射线暴期间观测到的发光现象是由高能带电粒子的运动引起的,这些粒子在以强大磁场为特征的稀薄介质中表现出几乎与光速无异的速度。"伽马射线暴就像来自早期宇宙的信标。我们在几十亿光年的距离上记录这些现象。"比留科夫解释说:"这些罕见的来源让我们有机会了解数十亿年前恒星的运行情况以及它们的存在是如何结束的,探索包裹它们的星际环境,比如星际气体的成分和数量,以及它们是如何与恒星喷出物相互作用的。"但是,研究伽马射线暴不仅能扩大我们对最大规模遥远恒星的了解。从基础物理学的角度来看,伽马射线暴是一个天然的物理实验室,它展现了可以想象到的最极端的条件,包括超高的能量、速度、密度和引力。正是在这些状态下,科学家们可以检验人类现有的物理理论。...PC版:https://www.cnbeta.com.tw/articles/soft/1374493.htm手机版:https://m.cnbeta.com.tw/view/1374493.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人