科学家发现能自我修复的金属

科学家发现能自我修复的金属这一发现是由桑迪亚国家实验室和德克萨斯农工大学的研究小组共同完成的。7月19日,《自然》杂志对他们的研究成果进行了介绍。在这幅桑迪亚国家实验室发现的金属纳米级自愈合艺术效果图中,绿色标记为裂缝形成的位置,然后重新融合在一起。红色箭头表示意外触发这一现象的拉力方向。资料来源:丹-汤普森,桑迪亚国家实验室桑迪亚材料科学家布拉德-博伊斯(BradBoyce)说:"亲眼目睹这一切绝对令人震撼。我们已经证实,金属具有内在的自然自愈能力,至少在纳米级疲劳损伤的情况下是如此。"疲劳损伤是机器故障的常见原因。这种损伤表现为由于反复受力或运动而形成的微小裂纹。随着时间的推移,这些裂缝会不断扩大和扩展,直至最终导致设备断裂,用科学术语来说就是失效。博伊斯和他的团队看到消失的裂缝就是这些微小但后果严重的裂缝之一--以纳米为单位。博伊斯说:"从我们电子设备的焊点到汽车的发动机,再到我们驶过的桥梁,这些结构经常会由于循环加载导致裂纹产生并最终断裂,从而发生不可预知的故障。当它们发生故障时,我们不得不面对更换成本、时间损失,在某些情况下甚至会造成人员伤亡。这些故障对美国的经济影响每年以千亿美元计。"桑迪亚国家实验室研究员RyanSchoell使用由KhalidHattar、DanBufford和ChrisBarr开发的专业透射电子显微镜技术研究纳米级疲劳裂纹。资料来源:克雷格-弗里茨,桑迪亚国家实验室虽然科学家们已经开发出了一些自修复材料,主要是塑料,但自修复金属的概念在很大程度上还停留在科幻小说的范畴。"金属的裂缝只会越来越大,而不会越来越小。甚至我们用来描述裂纹生长的一些基本方程也排除了这种愈合过程的可能性,"博伊斯说。然而,这一由来已久的观念在2013年开始受到MichaelDemkowicz的挑战,他当时是麻省理工学院材料科学与工程系的助理教授,现在是德克萨斯农工大学的全职教授。Demkowicz发表了一项基于计算机模拟的新理论,认为在特定条件下,金属应该能够焊接封闭磨损造成的裂缝。Demkowicz的理论是在桑迪亚国家实验室和洛斯阿拉莫斯国家实验室联合运营的能源部用户设施"集成纳米技术中心"无意中得到证实的。。现任田纳西大学诺克斯维尔分校副教授的哈立德-哈塔尔(KhalidHattar)和现供职于能源部核能办公室的克里斯-巴尔(ChrisBarr)在发现这一现象时正在桑迪亚进行实验。他们当时只是想评估裂缝是如何在一块纳米级的铂金中形成和扩散的,他们使用了自己开发的一种特殊电子显微镜技术,以每秒200次的速度反复拉扯金属的两端。令人惊讶的是,实验进行了大约40分钟后,破坏的方向发生了逆转。裂缝的一端重新融合在一起,就像在重走自己的路一样,没有留下任何痕迹。随着时间的推移,裂缝沿着不同的方向重新生长。了解这一理论的博伊斯与Demkowicz分享了他的发现。随后,这位教授在计算机模型上重现了实验,证实在桑迪亚看到的现象与他多年前的理论相同。他们的工作得到了能源部基础能源科学科学办公室、国家核安全局和国家科学基金会的支持。关于自修复过程还有很多未知数,包括它是否会成为制造环境中的实用工具。博伊斯说:"这些发现在多大程度上具有普遍性将成为广泛研究的课题。我们展示了纳米晶金属在真空中发生的这种情况。但我们不知道这是否也能在空气中的传统金属中诱发。尽管存在种种未知,但这一发现仍然是材料科学前沿的一次飞跃。"Demkowicz说:"我希望这一发现能够鼓励材料研究人员考虑,在适当的情况下,材料可以做出我们意想不到的事情。"...PC版:https://www.cnbeta.com.tw/articles/soft/1372193.htm手机版:https://m.cnbeta.com.tw/view/1372193.htm

相关推荐

封面图片

科学家震惊于纳米晶金属的自愈能力

科学家震惊于纳米晶金属的自愈能力在桑迪亚国家实验室(SandiaNationalLaboratories)发现的纳米级金属自愈合艺术效果图中,绿色标示出裂缝形成的位置,然后重新融合在一起。红色箭头表示意外触发这一现象的拉力方向。资料来源:丹-汤普森,桑迪亚国家实验室桑迪亚国家实验室的一组研究人员在对纳米晶金属进行断裂实验时,发现了这一令人难以置信的现象。研究结果最近发表在《自然》杂志上。在这一发现之前,人们有理由认为自愈金属只能出现在科幻小说中。德克萨斯农工大学材料科学与工程系教授、最近这项研究的共同作者MichaelDemkowicz博士却不这么认为。十年前,在麻省理工学院材料科学与工程系担任助理教授时,Demkowicz和他的学生就预测到了金属的自愈性。"我们的出发点并不是要找到自愈。我的学生GuoxiangXu当时正在做断裂模拟,"Demkowicz说。"我们无意中在他的一个模拟中观察到了自发愈合,于是决定继续跟进"。当时,就像现在一样,2013年的结果令人惊讶。Demkowicz补充说,他、他的学生和同事都对最初的理论有些怀疑。不过,他的模拟模型在随后的几年里被其他研究人员多次复制和扩展。Demkowicz说:"很明显,模拟并没有错误,因为其他人在他们的建模工作中也看到了同样的效果。"2013年的模型和最近的实验都使用了纳米晶金属,这种金属的晶体结构或晶粒大小以纳米级(百万分之一毫米)测量。Demkowicz表示,虽然这种金属在工程应用中并不广泛,但大多数金属都能以这种形式制造。他进一步解释说,纳米晶金属使研究自愈合变得更容易,因为它们的晶粒尺寸小,可以产生更多的微结构特征,即使是微小的裂缝也能与之相互作用。这两项研究都发现,晶界这一特征会影响裂纹愈合,具体取决于晶界相对于裂纹的迁移方向。Demkowicz补充说,这些特征在许多金属和合金中都很常见,而且可以加以控制。Demkowicz说:"当前工作的主要影响是将最初的理论预测'从绘图板上移开',并证明它在现实中发生了。我们还没有真正开始优化自愈微结构。找出促进自愈合的最佳改变是未来工作的一项具有挑战性的任务。"这项工作的潜在应用可能会有很大不同。Demkowicz认为,在晶粒尺寸较大的传统金属中也有可能实现自愈,但还需要未来的研究。2013年的理论和最近的实验都有一个共同的条件,那就是两者都是在真空环境中进行的,完全没有外来物质。这些外来物质可能会干扰裂纹表面的粘合或冷焊能力。即使存在这种限制,但仍有可能应用于航天技术或不接触外界空气的内部裂缝。经过十年的努力,Demkowicz的理论在桑迪亚国家实验室的实验中取得了成果。在目前的研究中,Demkowicz能够验证最近观察到的现象是否与他最初的模拟模型相符。"这是一个了不起的实验。不过,我认为这也是理论上的一大胜利,"Demkowicz说。"材料的复杂性往往使我们难以自信地预测新现象。这一发现让我看到了希望,我们的材料行为理论模型正走在正确的道路上。"...PC版:https://www.cnbeta.com.tw/articles/soft/1389121.htm手机版:https://m.cnbeta.com.tw/view/1389121.htm

封面图片

科学家发现金属裂纹可自我修复

科学家发现金属裂纹可自我修复科学家首次目睹了断裂的金属碎片在没有任何人为干预的情况下融合在一起,这一过程推翻了基本的科学理论。如果能将这种新发现的现象加以利用,可能会引发一场工程革命:自我修复的发动机、桥梁和飞机可以逆转磨损造成的损害,从而更安全、更耐用。疲劳损伤是机器磨损并最终损坏的一种方式。反复的应力或运动导致微观裂纹的形成。随着时间推移,这些裂纹会生长和扩散,直至断裂。2013年,时任MIT材料科学与工程系助理教授、现得克萨斯农工大学教授MichaelDemkowicz开始研究传统材料理论。他发表了一项基于计算机模拟结果的新理论,认为在某些条件下,金属应该能够修复由磨损形成的裂纹。最新发现证明Demkowicz的理论是正确的。关于金属自修复过程还有很多未知数,包括它是否会成为制造业中的实用工具。来源,,来自:雷锋频道:@kejiqu群组:@kejiquchat投稿:@kejiqubot

封面图片

科学家开发出能产生量子纠缠光子网的超薄超表面

科学家开发出能产生量子纠缠光子网的超薄超表面桑迪亚国家实验室和马克斯-普朗克研究所的科学家们已经开发出一种方法,它可以使用比平时简单得多的设置来生产量子纠缠光子网。其关键则是一个厚度只有纸的1/100的精确图案表面,它可以取代一屋子的光学设备。PC版:https://www.cnbeta.com/articles/soft/1316551.htm手机版:https://m.cnbeta.com/view/1316551.htm

封面图片

科学家发现帮助古罗马混凝土自我修复的秘密成分

科学家发现帮助古罗马混凝土自我修复的秘密成分混凝土是世界上最常用的建筑材料,但它并非不受损害。天气和压力会导致微小的裂缝,这些裂缝会发展成更大的裂缝,最终威胁到整个结构的完整性。这可能需要昂贵的维护或更换,以防止灾难性的损坏。相比之下,古罗马结构经受了两千多年的时间考验。为了找出原因,科学家们长期以来一直在显微镜下检查材料的样本,以研究其成分并发现赋予这种强度的成分。由意大利一个特定地区的火山灰制成的Pozzolanic材料,具有突出的特点。石灰也是如此,在以前的研究中发现,这有助于混凝土在码头等海洋环境中随着时间的推移变得更加坚固。一种常见的包含物--毫米大小的白色矿物块,称为石灰碎块--通常被视为一种副产品而被忽视,但在新的研究中,研究人员发现,它们的存在可能是有原因的。该研究的主要作者AdmirMasic说:"这些石灰碎块的存在仅仅归因于低质量控制,这种想法一直困扰着我。如果罗马人为制造一种杰出的建筑材料付出了如此多的努力,遵循所有经过许多世纪优化的详细配方,为什么他们会在确保生产出混合良好的最终产品方面付出如此少的努力?这个故事一定有更多的内容。"左图:意大利Privernum考古遗址,本研究在那里收集了古代混凝土样品。右图。其中一个样品中的成分的假色图,其中有一个大的钙包合物(红色)MIT研究小组使用了一些成像和化学绘图技术来更仔细地检查石灰碎块,并发现它们是由碳酸钙类型的物质在高温下形成的。这表明它们是通过直接添加(或"热混合")生石灰制成的,生石灰是一种比古罗马人假定使用的石灰形式更具反应性的形式。"热搅拌的好处是双重的,"Masic说。"首先,当整个混凝土被加热到高温时,它会出现如果只使用消石灰就不可能出现的化学成分,同时产生高温相关的化合物,否则就不会形成。第二,由于所有的反应都加快了,这种温度的提高大大减少了固化和凝固时间,使施工速度大大加快。"但更重要的是,这些石灰碎块在混凝土的自我修复中发挥了积极作用。热搅拌过程使夹杂物变脆,因此,当混凝土中形成微小的裂缝时,它们会比周围的材料更容易穿过石灰块。当水进入裂缝时,就会与石灰发生反应,形成一种溶液,重新硬化成碳酸钙并堵塞裂缝。它还可以与沸石材料反应,进一步加强混凝土本身。因此,研究小组说,这些石灰碎块不是不需要的副产品,而是有其存在的理由。这种自我修复机制可能是古罗马混凝土结构长寿的一个主要因素。为了测试这一假设,研究人员制作了古代和现代混凝土的热混合样本,然后将它们敲碎,并让水长时间流经裂缝。两周后,古代混凝土样本的裂缝已经愈合,阻止了水的流动。另一方面,现代材料则完全没有愈合。研究小组说,这一发现不仅有助于我们了解古代工程的秘密,而且也可以帮助改进现代混凝土配方。为此,研究人员正在采取步骤使这种材料商业化。该研究发表在《科学进展》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1338305.htm手机版:https://m.cnbeta.com.tw/view/1338305.htm

封面图片

科学家发现制造原子级薄金属层的简单方法

科学家发现制造原子级薄金属层的简单方法一张扫描电子显微镜图像显示了被称为MXenes的微小结构的美丽形状,科学家们对新设备和电子产品感兴趣,但以前很难创造。这些是用芝加哥大学的化学家们发明的一种新的更容易和更少毒性的方法培育的。作为参考,一根人类头发的直径约为50微米。资料来源:DiWang直到最近,生产这些被称为MXenes(发音为"max-eens")的材料,就像在传统的法国面包店中制作一个高质量的羊角面包一样费力。但是,芝加哥大学的科学家们的一项新突破表明,如何更快速、更容易地制造这些MXenes,并减少有毒副产品。研究人员希望发表在《科学》杂志上的这一发现将刺激创新,并为将MXenes用于日常电子产品和设备铺平道路。当它们在2011年被发现时,MXenes让很多科学家非常兴奋。通常情况下,当你把金或钛这样的金属削成原子级薄片时,它就不再像金属那样表现。但是MXenes中不同寻常的强化学键使它们能够保留金属的特殊能力,如强烈的导电性。它们也很容易定制,化学研究生王迪说:"例如可以把离子放在层之间,用它们来储存能量。"他与博士后学者周陈坤是该论文的共同第一作者。所有这些优势都可以使MXenes在建造新设备时非常有用--例如,储存电力或阻止电磁波干扰。然而,我们所知道的制造MXenes的唯一方法涉及几个密集的化学工程步骤,包括在3000华氏度加热混合物,然后在氢氟酸中进行浸泡。芝加哥大学ErnestDeWittBurton杰出化学服务教授、阿贡国家实验室联合任命人员和论文的通讯作者DmitriTalapin解释说:"如果你在实验室里做几克实验,这很好,但如果你想制造大量的商业产品,这将带来重大的腐蚀性废物处理问题。"为了设计一种更有效、毒性更小的方法,该团队使用了化学原理--特别是"原子经济",即寻求在反应过程中尽量减少浪费的原子数量。芝加哥大学的团队发现了新的化学反应,使科学家能够从简单和廉价的前体中制造MXenes,而不需要使用氢氟酸。它只包括一个步骤:将几种化学品与希望制作的任何金属层混合,然后在1700华氏度加热该混合物。这种更简单、毒性更小的方法为科学家们开辟了新的途径,为不同的应用创造和探索新品种的MXenes--例如不同的金属合金或不同的离子调味剂。研究小组用钛和锆金属测试了该方法,但他们认为该技术也可用于许多其他不同的组合。"这些新的MXenes在视觉上也很美,"王补充说。"它们像花一样立起来--这甚至可能使它们更好地进行反应,因为边缘暴露出来,可以让离子和分子在金属层之间移动。"...PC版:https://www.cnbeta.com.tw/articles/soft/1352219.htm手机版:https://m.cnbeta.com.tw/view/1352219.htm

封面图片

桑迪亚实验室制造出首批能够支持200个离子阱量子比特的设备

桑迪亚实验室制造出首批能够支持200个离子阱量子比特的设备在桑迪亚国家实验室微系统工程、科学与应用制造厂制造的"EnchiladaTrap"。资料来源:克雷格-弗里茨,桑迪亚国家实验室除了在桑迪亚运行的陷阱外,杜克大学也将使用几个陷阱来执行量子算法。杜克大学和桑迪亚大学是量子系统加速器的研究合作伙伴,量子系统加速器是能源部科学办公室资助的五个美国国家量子信息科学研究中心之一。离子阱是一种能容纳带电原子或离子的微型芯片。有了更多被俘获的离子或量子比特,量子计算机就能运行更复杂的算法。乔纳森-斯特克(JonathanSterk)指着桑迪亚国家实验室真空室内的离子阱特写镜头中被困离子量子比特移动的部分。资料来源:克雷格-弗里茨,桑迪亚国家实验室只要有足够的控制硬件,EnchiladaTrap就能利用受其前身RoadrunnerTrap启发而设计的由五个捕集区组成的网络,存储和传输多达200个量子比特。这两个版本都是在桑迪亚的微系统工程、科学和应用制造厂生产的。桑迪亚科学家兼量子系统加速器首席研究员丹尼尔-斯蒂克(DanielStick)认为,在解决有用问题方面,拥有多达200个量子比特和当前错误率的量子计算机不会超过传统计算机。不过,它将使研究人员能够测试一种具有许多量子比特的架构,这种架构未来将支持物理学、化学、数据科学、材料科学和其他领域更复杂的量子算法。斯蒂克说:"我们正在为量子计算领域提供发展空间,探索更大的机器和更复杂的编程。"桑迪亚国家实验室电气工程师雷-哈特利(RayHaltli)在离子阱上放置金丝键之前优化参数。准备就绪后,机器自动运行,每秒最多可放置七根金丝。资料来源:克雷格-弗里茨,桑迪亚国家实验室前瞻性设计桑迪亚研究、制造和测试离子阱已有20年之久。为了克服一系列设计挑战,该团队将机构知识与新的创新技术相结合。首先,他们需要空间来容纳更多的离子,并需要一种方法来重新排列离子,以便进行复杂的计算。解决方案是建立一个电极网络,其分支类似于家族树或锦标赛支架。每个狭窄的分支都是存储和穿梭离子的地方。桑迪亚公司曾在以前的捕集器中试验过类似的结点。Enchilada捕集器以平铺的方式使用了相同的设计,因此可以探索较小捕集器的扩展特性。斯蒂克认为,分支结构是目前重新排列被困离子量子比特的最佳解决方案,并预计未来更大版本的陷阱也将采用类似设计。另一个令人担忧的问题是EnchiladaTrap上的电能耗散,这可能会产生大量热量,导致表面排气增加、电击穿风险增大以及电场噪声水平升高。为了解决这个问题,生产专家设计了新的微观特征,以降低某些电极的电容。桑迪亚公司的ZachMeinelt是该项目的主要集成商,他说:"我们的团队总是着眼于未来。我们与科学家和工程师合作,了解他们在未来几年需要什么样的技术、功能和性能改进。然后,我们设计和制造疏水阀,以满足这些要求,并不断寻求进一步改进的方法。"这项研究由美国能源部资助。...PC版:https://www.cnbeta.com.tw/articles/soft/1378741.htm手机版:https://m.cnbeta.com.tw/view/1378741.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人