NASA韦伯太空望远镜探测到岩石行星形成区的水蒸气

NASA韦伯太空望远镜探测到岩石行星形成区的水蒸气美国国家航空航天局(NASA)詹姆斯-韦伯太空望远镜的中红外仪器(MIRI)收集到的新数据探测到了该系统内盘的水蒸气,距离恒星不到1亿英里(1.6亿公里)--这正是岩质陆地行星可能形成的区域。(值得注意的是,这是首次在一个已被证实拥有两颗或更多原行星的圆盘的陆地区域检测到水。"我们曾在其他星盘中看到过水,但没有在如此近距离和目前正在形成行星的系统中看到过水。在韦伯望远镜之前,我们无法进行这种测量,"第一作者、德国海德堡马克斯-普朗克天文学研究所(MPIA)的朱莉娅-佩罗蒂(GiuliaPerotti)说。"这一发现极其令人兴奋,因为它探测到了与地球类似的岩质行星通常形成的区域,"该论文的共同作者、马克斯-普朗克天文学研究所所长托马斯-亨宁补充说。亨宁是韦伯中红外探测器(MIRI)的联合首席研究员,该探测器进行了探测,他也是采集数据的MINDS(MIRI中红外盘巡天)计划的首席研究员。利用韦伯中红外光谱仪(MIRI)获得的PDS70的原行星盘光谱显示了许多水蒸气发射线。科学家们确定,水位于该系统的内盘,距离恒星不到1亿英里--该区域可能正在形成岩质的类地行星。资料来源:NASA、ESA、CSA、JosephOlmsted(STScI)PDS70是一颗K型恒星,比太阳温度低,估计年龄为540万年。就具有行星形成盘的恒星而言,这颗恒星的年龄相对较大,因此水蒸气的发现令人吃惊。随着时间的推移,行星形成盘中的气体和尘埃含量会逐渐减少。要么是中心恒星的辐射和风将这些物质吹走,要么是尘埃长成更大的物体,最终形成行星。由于之前的研究未能在类似老化的星盘中心区域探测到水,天文学家怀疑水可能无法在严酷的恒星辐射中存活,从而导致形成岩石行星的环境变得干燥。天文学家尚未在PDS70的内盘中探测到任何正在形成的行星。不过,他们确实看到了以硅酸盐形式存在的建造岩石世界的原材料。水蒸气的探测意味着,如果岩质行星正在那里形成,那么它们从一开始就有水可用。"我们发现了相对较多的小尘粒。结合我们对水蒸气的探测,内盘是一个非常令人兴奋的地方,"合著者、荷兰拉德布德大学的伦斯-沃特斯(RensWaters)说。这些水的起源于哪里?这一发现提出了水从何而来的问题。MINDS小组考虑了两种不同的情况来解释他们的发现。一种可能是,水分子是在氢原子和氧原子结合时在我们探测到的地方形成的。第二种可能是,包裹着冰的尘埃粒子正从低温的外盘被传送到高温的内盘,在那里水冰升华并变成水蒸气。这种运输系统将是令人惊讶的,因为尘埃必须穿过两颗巨行星所形成的巨大空隙。这一发现提出的另一个问题是,在恒星的紫外线照射下,任何水分子都会被击碎,那么水是如何在如此靠近恒星的地方存活下来的呢?最有可能的是,周围的物质如尘埃和其他水分子起到了保护作用。因此,在PDS70内盘探测到的水可以在被破坏后存活下来。最终,研究小组将使用韦伯望远镜的另外两台仪器--NIRCam(近红外照相机)和NIRSpec(近红外摄谱仪)来研究PDS70系统,以求获得更深入的了解。这些观测是第1282号保证时间观测计划的一部分。这一发现已发表在《自然》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1372995.htm手机版:https://m.cnbeta.com.tw/view/1372995.htm

相关推荐

封面图片

詹姆斯·韦伯望远镜可能在岩质行星的大气层中探测到了水蒸气

詹姆斯·韦伯望远镜可能在岩质行星的大气层中探测到了水蒸气该望远镜强大的红外线眼睛可以分析遥远世界的大气成分,寻找有利于生命的特定元素或其他可能是生命存在的直接证据。水蒸气是可居住性的一个关键组成部分,虽然JWST以前在系外行星的大气层中检测到了水蒸气,但它只在类似木星的气态巨行星中检测到过,然而这些巨行星没有固体表面来(实际上)支持生命。但是现在,或许该望远镜已经在一颗类似地球的岩石系外行星的大气中探测到了水蒸气。这颗行星位于大约26光年之外,被称为GJ486b,是一颗超级地球,比我们的母星宽约30%,质量大三倍。但是在你收拾行李之前,值得注意的是,那里的重力会更强,它离它的主星如此之近,表面温度约为430℃(800°F),而且它被潮汐锁定,所以在那里居住,就必须在永久的白天或黑夜之间做出选择。适居性可能不在考虑之列,但是在GJ486b的大气层中探测到水蒸气仍然是一件大事。这不仅将是有史以来第一次直接探测到岩质系外行星周围的大气层,而且还将表明,这些非常热的世界尽管受到来自其宿主恒星的辐射的打击,但仍能保持其大气层,这本身就会对其他潜在的宜居行星产生重大影响。JWST在GJ486b上检测到了似乎是水蒸气的物质。当这颗行星穿过恒星的表面时,光线穿过大气层并产生一个信号,天文学家可以通过分析来计算出其中的元素。在观察了其中两个事件,并通过三种不同的方法分析数据后,该小组确定了一个似乎是水蒸气的信号。将韦伯的数据与星斑或系外行星大气层中的水蒸气模型进行比较的图表NASA,ESA,CSA,JosephOlmsted(STSCI)然而,有一个问题。该团队不能排除水蒸气信号实际上是来自恒星本身。星斑比恒星表面的其他部分要冷得多,可能是水蒸气的所在地,包括我们自己的太阳。这可能会产生一个假结果。该研究的共同作者RyanMacDonald说:"我们没有观察到行星在过境期间穿过任何星斑的证据。但这并不意味着该恒星上的其他地方没有斑点。而这正是将这种水信号印入数据的物理情景,并可能最终看起来像一个行星大气层。"值得庆幸的是,韦伯有办法进行检查。它的其他仪器可以在较短的红外波长下研究该行星,以更好地确定信号来自何处,并弄清该行星是否有大气层。例如,在即将进行的一项任务中,中红外仪器(MIDI)将被用来寻找这个星球上最热的地方。如果没有大气层,这个点应该就在白天的中心位置,但是如果有大气层,热量将能够循环,最热的点将在其他地方。无论怎样,这都是一个值得关注的世界。这项研究将发表在《天体物理学杂志通讯》(PDF)上:https://stsci-opo.org/STScI-01GXR8V0YG4Q7KDM0GZC8ATBEP.pdf...PC版:https://www.cnbeta.com.tw/articles/soft/1357773.htm手机版:https://m.cnbeta.com.tw/view/1357773.htm

封面图片

韦伯太空望远镜揭示岩石行星可在极端环境中形成

韦伯太空望远镜揭示岩石行星可在极端环境中形成天文学家发现了一系列分子,它们都是岩石行星的组成成分。太空是一个严酷的环境,但有些区域比其他区域更加严酷。一个被称为龙虾星云的恒星形成区孕育着银河系中一些质量最大的恒星。大质量恒星的温度更高,因此会发出更多的紫外线(UV)。这些紫外线照射着附近恒星周围的行星形成盘。天文学家预计紫外线会分解许多化学分子。然而,詹姆斯-韦伯太空望远镜在这样一个星盘中检测到了多种分子,包括水、一氧化碳、二氧化碳、氰化氢和乙炔。这些分子是岩石行星的构成成分之一。这是艺术家绘制的年轻恒星被原行星盘包围的图像,行星正在原行星盘中形成。图片来源:ESO一个国际天文学家小组利用美国国家航空航天局的詹姆斯-韦伯太空望远镜,首次观测到在银河系最极端环境中的一个圆盘的高度辐照内部、岩石行星形成区域中的水和其他分子。这些结果表明,岩质行星形成的条件可能发生在比以前想象的更广泛的环境中。这是詹姆斯-韦伯太空望远镜"极端紫外环境"(XUE)计划的首批研究成果,该计划主要研究大质量恒星形成区中行星形成盘(由气体、尘埃和大块岩石组成的巨大旋转云团,行星在此形成和演化)的特征。这些区域很可能代表了大多数行星系统的形成环境。了解环境对行星形成的影响对于科学家深入了解不同类型系外行星的多样性非常重要。XUE计划的目标是龙虾星云(又称NGC6357)三个区域中的共15个盘状星团,这是一个大型发射星云,距离地球大约5500光年,位于天蝎座。龙虾星云是最年轻、最近的大质量恒星形成群之一,也是银河系中一些质量最大恒星的所在地。大质量恒星的温度更高,因此会发出更多的紫外线(UV)辐射。这会分散气体,使圆盘的预期寿命短至一百万年。有了韦伯望远镜,天文学家现在可以研究紫外线辐射对太阳等恒星周围原行星盘内部行星形成区域的影响。德国马克斯-普朗克天文学研究所的玛丽亚-克劳迪娅-拉米雷斯-坦努斯(MaríaClaudiaRamírez-Tannus)说:"韦伯望远镜是唯一具有空间分辨率和灵敏度来研究大质量恒星形成区行星形成盘的望远镜。"天文学家们的目标是利用韦伯中红外仪器(MIRI)上的中分辨率分光计来描述龙虾星云中的岩石行星形成盘区的物理特性和化学成分。第一项成果的重点是位于Pismis24星团中被称为XUE1的原行星盘。研究小组成员、瑞典斯德哥尔摩大学的ArjanBik补充说:"只有中红外成像仪的波长范围和光谱分辨率才能让我们探测到岩质行星形成的温热气体和尘埃的分子清单和物理条件。"由于"XUE1"位于NGC6357中几颗大质量恒星附近,科学家们预计它在整个生命周期中一直暴露在大量紫外线辐射下。然而,在这种极端环境下,研究小组仍然检测到了一系列分子,而这些分子正是构成陆地行星的基石。研究小组成员、荷兰拉德布德大学的伦斯-沃特斯(RensWaters)说:"我们发现,薛厄一号周围的内盘与附近恒星形成区的内盘非常相似。我们探测到了水和其他分子,如一氧化碳、二氧化碳、氰化氢和乙炔。不过,发现的辐射比一些模型预测的要弱。这可能意味着外盘半径较小。"拉德布德大学的LarsCuijpers补充说:"我们感到惊讶和兴奋,因为这是在这种极端条件下首次探测到这些分子。研究小组还在星盘表面发现了部分结晶的硅酸盐小尘埃。这被认为是岩石行星的组成部分。"这些结果对于岩质行星的形成来说是个好消息,因为科学小组发现,内盘的条件与位于恒星形成区附近、只有低质量恒星形成的、经过充分研究的盘中的条件相似。这表明岩质行星可以在比以前认为的更广泛的环境中形成。研究小组指出,"XUE"计划的其余观测对于确定这些条件的共性至关重要。拉米雷斯-坦努斯说:"XUE1向我们表明,形成岩质行星的条件是存在的,所以下一步就是检查这种情况有多普遍。我们将观测同一区域的其他星盘,以确定观测到这些条件的频率"。这些结果已发表在《天体物理学报》上。...PC版:https://www.cnbeta.com.tw/articles/soft/1401283.htm手机版:https://m.cnbeta.com.tw/view/1401283.htm

封面图片

韦伯望远镜在周边的行星系统中发现了水

韦伯望远镜在周边的行星系统中发现了水天文学家检测到附近一颗恒星附近有水蒸气旋转,这表明围绕它形成的行星有一天可能能够支持生命。这个年轻的行星系统被称为PDS70,距离我们370光年。其中心的恒星大约有540万年的历史,温度比我们的太阳还要低。围绕它旋转的是两颗已知的气态巨行星,研究人员最近确定其中一颗PDS70b可能与正在形成的第三颗“兄弟”行星共享其轨道。两种不同的气体和尘埃盘(形成恒星和行星所需的成分)围绕着恒星。内盘和外盘之间的间隙长达50亿英里(80亿公里)。气态巨行星位于间隙中,它们围绕恒星运行。韦伯望远镜的中红外仪器检测到距离恒星不到1亿英里(1.6亿公里)的内盘中水蒸气的特征。天文学家认为,如果PDS70与我们的太阳系类似,那么内盘可能会形成与太阳系类似的小型岩石行星。在我们的系统中,地球的轨道距太阳9300万英里(1.5亿公里)。上周在《自然》杂志上发表了一项。——

封面图片

韦伯望远镜探测到附近系外行星WASP-107b的水蒸气、二氧化硫和沙云

韦伯望远镜探测到附近系外行星WASP-107b的水蒸气、二氧化硫和沙云艺术家印象中的WASP-107b及其母恒星。图片来源:插图:比利时LUCA艺术学院/KlaasVerpoest(视觉),JohanVanLooveren(排版)。AchrèneDyrek(法国原子能委员会和巴黎城市大学)、MichielMin(荷兰SRON)、LeenDecin(比利时鲁汶大学)/欧洲MIRIEXOGTO小组/欧空局/美国国家航空航天局(NASA)全世界的天文学家正在利用詹姆斯-韦伯太空望远镜(JWST)上搭载的中红外仪器(MIRI)的先进功能,对系外行星--围绕太阳以外的恒星运行的行星--进行突破性的观测。鲁汶大学天文学研究所的研究人员共同领导的欧洲天文学家小组观测到了这颗独特的气态系外行星WASP-107b。这颗行星的质量与海王星相似,但体积却比海王星大得多,几乎接近木星的大小。与太阳系内的气态巨行星相比,WASP-107b的这一特点使其显得相当"蓬松"。与木星等太阳系巨行星的探测深度相比,这颗系外行星的蓬松度使天文学家能够深入其大气层大约50倍。WASP-107b是一颗独特的气态系外行星,它围绕着一颗比太阳温度稍低、质量稍小的恒星运行。深入的大气分析欧洲天文学家小组充分利用了这颗系外行星非凡的蓬松度,使他们能够深入观察它的大气层。这个机会为揭开其大气层复杂的化学成分打开了一扇窗。这背后的原因非常简单:在密度较低的大气层中,信号或光谱特征要比在密度较高的大气层中突出得多。他们最近在《自然》杂志上发表的研究报告揭示了水蒸气、二氧化硫(SO2)和硅酸盐云的存在,但值得注意的是,没有发现温室气体甲烷(CH4)的踪迹。这些探测结果为了解这颗迷人系外行星的动力学和化学性质提供了重要信息。首先,甲烷的缺失暗示着这颗行星内部可能是温暖的,这为我们了解热能在行星大气中的流动提供了一个诱人的窗口。其次,二氧化硫(因有火柴烧焦的气味而闻名)的发现也是一大惊喜。以前的模型曾预测不存在二氧化硫,但WASP-107b大气层的新型气候模型现在表明,WASP-107b的蓬松度本身就能在其大气层中形成二氧化硫。尽管它的宿主恒星由于温度较低而发射出的高能光子相对较少,但由于其蓬松的特性,这些光子可以深入到行星的大气层中。这使得产生二氧化硫所需的化学反应得以发生。由JWST上的中红外仪器(MIRI)的低分辨率光谱仪(LRS)捕捉到的暖海王星系外行星WASP-107b的透射光谱显示了该行星大气层中存在水蒸气、二氧化硫和硅酸盐(沙)云的证据。资料来源:MichielMin/EuropeanMIRIEXOGTOteam/ESA/NASA云的组成和动力学但这并不是他们观测到的全部。与无云的情况相比,二氧化硫和水蒸气的光谱特征都明显减弱。高空云层部分遮挡了大气中的水蒸气和二氧化硫。虽然其他系外行星上也有云层的推断,但这是天文学家第一次能够明确确定这些云层的化学成分。在这种情况下,云层由小硅酸盐颗粒组成,这是一种人类熟悉的物质,在世界许多地方都能找到,是沙子的主要成分。"JWST正在彻底改变系外行星的特征描述,以惊人的速度提供前所未有的洞察力,"领衔作者、鲁汶大学的LeenDecin教授说。"JWST的近红外成像仪在这颗蓬松的系外行星上发现了沙子、水和二氧化硫云,这是一个关键的里程碑。它重塑了我们对行星形成和演化的理解,为我们自己的太阳系带来了新的曙光"。欧洲天文学家小组深入观察WASP-107b的蓬松大气层,不仅发现了水蒸气和二氧化硫,甚至还发现了硅酸盐沙云。图片来源:插图:比利时LUCA艺术学院/KlaasVerpoest(视觉),JohanVanLooveren(排版)。科学:AchrèneDyrek(法国原子能委员会和巴黎城市大学)、MichielMin(荷兰SRON)、LeenDecin(比利时鲁汶大学)/欧洲MIRIEXOGTO小组/欧空局/美国宇航局温度和云的形成在地球大气中,水在低温下会凝结成冰,而在温度达到1000摄氏度(约1800华氏度)左右的气态行星中,硅酸盐颗粒会凝结成云。然而,WASP-107b的外层大气温度约为500摄氏度(约900华氏度),根据传统模型的预测,这些硅酸盐云应该是在大气深处形成的,那里的温度要高得多。此外,大气深处的沙云会下雨。那么,这些沙云怎么可能存在于高空并持续存在呢?领衔作者米希尔-闵(MichielMin)博士说:"我们在高空看到这些沙云的事实肯定意味着,沙雨水滴在更深的高温层中蒸发,产生的硅酸盐蒸汽被有效地移回高空,在那里重新凝结,再次形成硅酸盐云。这与我们地球上的水蒸气和云的循环非常相似,但水滴是由沙子构成的"。WASP-107b的大气中之所以会持续存在沙云,就是因为这种通过垂直传输不断升华和凝结的循环。詹姆斯-韦伯太空望远镜旨在研究系外行星的大气层,从而确定这些行星是否适合居住或是否含有生物特征。资料来源:诺斯罗普-格鲁曼公司系外行星研究的进展这项开创性的研究不仅揭示了WASP-107b的奇异世界,还推动了我们对系外行星大气的认识。它标志着系外行星探索的一个重要里程碑,揭示了这些遥远世界上化学物质和气候条件之间错综复杂的相互作用。"JWST使我们能够对太阳系中没有任何对应的系外行星进行深入的大气表征,我们正在揭开新世界的面纱!"主要作者、巴黎CEA的AchrèneDyrek博士说。近红外成像仪的设计与开发得益于比利时联邦科学政策办公室BELSPO通过欧空局PRODEX计划提供的资金,比利时工程师和科学家在MIRI仪器的设计和开发过程中发挥了关键作用,其中包括列日空间中心(CSL)、泰雷兹阿莱尼亚航天公司(沙勒罗瓦)和OIP传感器系统公司(欧德纳德)。在鲁汶工程大学天文学研究所,仪器科学家在英国实验室、美国宇航局戈达德中心和美国宇航局约翰逊航天中心模拟太空环境的特殊测试舱中对MIRI仪器进行了广泛测试。与欧洲和美国的同事们一起,我们已经建造和测试了近20年的MIRI仪器。仪器专家、鲁汶大学的BartVandenbussche博士说:"看到我们的仪器揭开这颗引人入胜的系外行星大气层的面纱,我们感到非常有成就感。"德国马克斯-普朗克天文研究所的JeroenBouwman博士说:"这项研究综合了对JWST观测数据进行的多项独立分析的结果,不仅体现了我们多年来在MIRI仪器制造方面的投入,也体现了我们多年来在MIRI观测数据的校准和分析工具方面的投入。"...PC版:https://www.cnbeta.com.tw/articles/soft/1397255.htm手机版:https://m.cnbeta.com.tw/view/1397255.htm

封面图片

韦伯太空望远镜揭示了行星形成的尘埃遗迹

韦伯太空望远镜揭示了行星形成的尘埃遗迹这两张图片是AUMic周围的尘埃碎片盘,AUMic是一颗红矮星,位于32光年外的显微镜星座南部。研究小组使用韦伯的近红外相机(NIRCam)来研究AUMic。NIRCam的日冕仪阻挡了中心恒星的强光,使研究小组能够研究非常接近该恒星的区域。被遮挡住的恒星的位置在每张图像的中心用一个白色的图形标记出来。被日冕仪遮挡的区域用一个虚线圈表示。韦伯提供了3.56微米(顶部,蓝色)和4.44微米(底部,红色)的图像。研究小组发现,圆盘在较短或"较蓝"的波长下更亮,这可能意味着它含有大量细小的尘埃,在散射较短波长的光时更有效。NIRCam图像使研究人员能够追踪这个直径为60个天文单位(56亿英里)的圆盘,它离恒星的距离为5个天文单位(4.6亿英里)--相当于我们太阳系中木星的轨道。这些图像比研究小组预期的更详细、更明亮,科学家们能够在比预期的更靠近恒星的地方对圆盘进行成像。有关的恒星系统,AUMicroscopii或AUMic位于32光年外的Microscopium星座南部。它的年龄大约为2300万年,这意味着行星的形成已经结束,因为这一过程通常需要不到1000万年。这颗恒星有两颗已知的行星,由其他望远镜发现。剩下的尘埃碎片盘是剩余的行星碎片之间碰撞的结果--相当于我们太阳系中的尘埃的更大质量,创造了一种被称为黄道光的现象。"一个碎片盘通过行星个体的碰撞不断得到补充。通过研究它,我们得到了一个了解这个系统最近动态历史的独特窗口,"美国宇航局戈达德太空飞行中心的凯伦-劳森说,他是这项研究的主要作者,也是研究AUMic的研究小组成员。美国宇航局戈达德空间飞行中心的JoshSchlieder说:"这个系统是极少数拥有已知系外行星的年轻恒星和碎片盘的例子之一,它足够近,足够亮,可以使用韦伯独特的强大仪器进行全面研究。"研究小组使用韦伯的近红外相机(NIRCam)来研究AUMic。在NIRCam的日冕仪的帮助下,他们能够研究非常接近恒星的区域,因为日冕仪可以阻挡中心恒星的强光。NIRCam的图像使研究人员能够追踪到距离恒星5个天文单位(4.6亿英里)的圆盘--相当于我们太阳系中木星的轨道。这些由韦伯近红外相机(NIRCam)拍摄的围绕AUMicroscopii星的圆盘的日冕图像,显示了罗盘箭头、比例尺和颜色键供参考。北方和东方的罗盘箭头显示了图像在天空中的方向。请注意,相对于地面地图上的方向箭头(从上面看),天空中的北和东之间的关系(从下面看)是翻转的。比例尺是以天文单位标注的,也就是A.U.,这是地球和太阳之间的平均距离。这张图片中显示的视野大约是100A.U.的范围。这张图片显示的是不可见的近红外和中红外波长的光,已经转化为可见光的颜色。色键显示了收集光线时使用了哪些NIRCam滤镜。每个滤镜名称的颜色是用来表示通过该滤镜的红外光的可见光颜色。研究人员表示:"我们第一次看到的数据远远超过了预期。它比我们预期的更加详细。它比我们预期的更亮。我们探测到的圆盘比我们预期的要近。我们希望随着我们的深入挖掘,会有一些我们没有预测到的更多惊喜。"观测计划获得了3.56和4.44微米波长的图像。研究小组发现,圆盘在较短的波长下更亮,或者说"更蓝",这可能意味着它含有大量的细小灰尘,在散射较短波长的光时更有效。这一发现与之前的研究结果一致,后者发现来自AUMic的辐射压力--与更大质量的恒星的辐射压力不同--不会强大到足以将细小的尘埃从盘中喷出。虽然探测到圆盘很重要,但研究小组的最终目标是寻找宽轨道的巨行星,类似于木星、土星或我们太阳系的冰巨行星。这样的世界非常难以用过境法或径向速度法在遥远的恒星周围探测到。"这是我们第一次真正具有直接观测宽轨道行星的敏感性,这些行星的质量明显低于木星和土星。"劳森解释说:"在低质量恒星周围直接成像方面,这确实是一个新的、未知的领域。"这些结果将在今天美国天文学会第241次会议的一个新闻发布会上公布。...PC版:https://www.cnbeta.com.tw/articles/soft/1339865.htm手机版:https://m.cnbeta.com.tw/view/1339865.htm

封面图片

天文学家借助年轻恒星周围的水蒸气揭开行星形成的“宇宙秘方”

天文学家借助年轻恒星周围的水蒸气揭开行星形成的“宇宙秘方”天文观测的突破这些新发现得益于智利阿塔卡马沙漠中的望远镜群--阿塔卡马大型毫米波/亚毫米波阵列(ALMA)。曼彻斯特大学的朱德瑞尔班克天体物理中心(JodrellBankCentreforAstrophysics)是英国ALMA区域中心节点(UKARC)的所在地,该中心为使用ALMA的英国天文学家提供支持。曼彻斯特大学高级客座研究员AnitaRichards博士曾是英国ARC的成员,她在验证"波段5"接收器系统运行的小组中发挥了关键作用,该系统对于ALMA生成详细的水图像至关重要。理查兹博士说:"直接测量行星形成过程中的水蒸气含量,让我们更进一步了解制造海洋世界有多容易--有多少水是附着在凝结的岩石上,还是主要是后来添加到几乎完全形成的行星上的?这种观测需要最干燥的条件,只有利用智利的ALMA阵列才能进行如此详细的观测"。天文学家在一颗年轻恒星周围的圆盘中发现了水蒸气,而这正是行星可能正在形成的地方。在这张图片中,来自阿塔卡马大型毫米波/亚毫米波阵列(ALMA)的新观测数据(ESO是该阵列的合作伙伴)显示了水蒸气的蓝色色调。在年轻恒星所在的圆盘中心附近,环境温度更高,气体也更明亮。红色的环是ALMA之前的观测结果,显示了恒星周围尘埃的分布。资料来源:ALMA(ESO/NAOJ/NRAO)/S.Facchinietal.来自金牛座HL星系统的发现发表在《自然-天文学》(NatureAstronomy)杂志上的观测结果表明,在距离地球450光年的金牛座年轻的类太阳恒星HLTauri的内盘中,水的数量至少是地球所有海洋的三倍。领导这项研究的意大利米兰大学天文学家斯特凡诺-法奇尼说:"我从未想象过,我们能在行星可能形成的同一区域捕捉到水蒸气海洋的图像"。共同作者、意大利博洛尼亚大学天文学家莱昂纳多-特斯蒂补充说:"在距离我们450光年的地方,我们不仅能探测到水蒸气,还能捕捉到详细的图像,并对水蒸气进行空间分辨,这确实非常了不起。"利用ALMA进行的这些观测可以在一千米的距离上显示出像头发丝一样细小的细节,使天文学家能够确定水在圆盘不同区域的分布情况。对行星形成的影响在金牛座HL星圆盘存在一个已知缺口的区域发现了大量的水--一个行星可能正在形成的地方。在富含气体和尘埃的圆盘上,年轻的类行星天体在聚集物质并成长的过程中,会在圆盘上形成径向间隙。这表明,这些水蒸气可能会影响在这些区域形成的行星的化学成分。但是,用地面望远镜观测水并非易事,因为地球大气中大量的水蒸气会降低天文信号的质量。ALMA由欧洲南方天文台(ESO)及其国际合作伙伴共同运营,位于海拔约5000米的高海拔地区,建在一个高而干燥的环境中,专门用于最大限度地减少这种退化,从而提供了卓越的观测条件。迄今为止,ALMA是唯一能够绘制冷行星形成圆盘中水分布图的设施。构成圆盘的尘粒是行星形成的种子,它们相互碰撞并聚集成越来越大的天体,围绕恒星运行。天文学家认为,在足够冷的地方,水会冻结在尘粒上,尘粒会更有效地粘在一起--这是行星形成的理想场所。英国天文学研究中心(UKARC)的成员正在为ALMA的重大升级做出贡献,ALMA与欧洲南方天文台(ESO)的超大望远镜(ELT)也将在十年内上线,这将为行星的形成以及水在其中扮演的角色提供更清晰的视角。特别是METIS(中红外ELT成像仪和摄谱仪),它将为天文学家提供行星形成盘内部区域的无与伦比的视角,像地球这样的行星就是在这里形成的。编译自:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1423109.htm手机版:https://m.cnbeta.com.tw/view/1423109.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人