微型原子钟帮助加速寻找暗物质及其它

微型原子钟帮助加速寻找暗物质及其它科学家们正在利用光学原子钟这种超灵敏量子传感器寻找暗物质。(艺术家概念图)。挑战:操作这种超精密时钟所需的设备--包括激光器、电子设备和冷却器--可以摆满一张大桌子,甚至一个房间。这将使将它们发射到太空变得非常昂贵,甚至不可能。费米实验室研究人员孙鸿志和帕梅拉-克拉伯斯在试验台上测试芯片。图片来源:RyanPostel,费米实验室参与美国能源部和国防部联合项目的科学家旨在将这些元件微型化到鞋盒大小。经过两年多的努力,来自能源部费米国家加速器实验室和麻省理工学院林肯实验室的研究人员已经报告了初步的可喜成果。费米实验室的研究人员设计并开发了控制装置内电压所需的紧凑型电子设备,而麻省理工学院林肯实验室的研究人员正在开发制造时钟所需的微小离子阱和相应的光子学。费米实验室团队设计的芯片目前正在麻省理工学院实验室进行测试。实验室微电子部主任法拉-法希姆(FarahFahim)说:"这是迈向高精度、小尺寸原子钟的第一步。"麻省理工学院实验室的光学原子钟使用离子阱作为传感器--在本例中,锶离子被电场束缚。激光作为时钟的振荡器,测量离子在两个量化能级之间转换的振荡频率。这种结构紧凑的原子钟非常适合部署到太空中寻找超轻暗物质,理论上暗物质会引起电子质量的振荡。如果几个原子钟穿过太空中的一团暗物质,暗物质就会增加或减少每个原子钟测量到的光子能量,从而改变它的"滴答"声。当暗物质经过时,这些时钟会失去同步,之后又会重新同步。研究人员用GPS卫星进行了这些实验,每颗卫星都包含多个基于不同技术的原子钟。但他们在这些实验中没有发现暗物质的证据。研究人员认为,也许可以用更灵敏的时钟来探测暗物质。芯片的图形效果图。资料来源:费米实验室萨曼莎-科赫在美国国防部的资助下,麻省理工学院实验室的研究人员将困离子原子钟微型化,将激光传输和探测全部集成到一个芯片上。但要完成这个系统,麻省理工学院LL研究人员需要的不仅仅是微型化的原子和光子元件。他们需要帮助设计一个微型电子控制系统。这就是费米实验室介入的原因;能源部的高能物理QuantISED计划为电子开发和集成提供了资金。法希姆说:"我们拥有30多年为对撞机物理学开发紧凑型电子设备的经验,我们已经开发出了适用于极端环境的芯片。这与控制原子并读出其状态所需的电子器件并无二致。"麻省理工学院LL的参谋科学家罗伯特-麦康奈尔(RobertMcConnell)说:"这是一个真正利用了不同政府实验室独特能力的项目,"他领导了该项目的光子离子阱芯片开发工作。难点在于如何制造一种小型芯片,既能控制系统所需的高电压(至少20伏),又能保持高速度和低功耗。费米实验室团队与一家半导体制造商合作,最近制造出了一种能控制高达9伏电压的芯片。"该项目的首席芯片设计师孙鸿志说:"它的电压噪声也很低,因此不会扰乱离子的量子态。"准备测试:芯片的定制测试板与测试设备连接。芯片用导线粘接在测试板上,并由方形白色塑料盖保护。图片来源:RyanPostel,费米实验室麻省理工学院LL研究人员现在希望通过一种技术将芯片与离子阱集成在一起,这种技术允许他们将两个芯片堆叠在一起,并通过通孔(即层间电连接)将它们连接起来。随后,费米实验室的研究人员将继续完善电子设计,将电压提高到20伏。我们的目标是制造出一个紧凑型原子钟,其频率不确定性为10-18。麦康奈尔说:"这次合作让我们获得了两个世界的好处。通过让费米实验室设计电路并将其与我们的离子阱集成,我们可以制造出可控性良好的量子传感器。"这些时钟的用途可以超出高能物理研究,包括太空防御,甚至可以作为极其灵敏的传感器来预测海啸或地震。这些离子阱还可以成为未来量子计算机的基础。法希姆说:"国防部和能源部在应用目标上存在巨大差异,但在基础技术开发方面却有着同样引人注目的协同效应;我们只需要找到合作的方法。"...PC版:https://www.cnbeta.com.tw/articles/soft/1374213.htm手机版:https://m.cnbeta.com.tw/view/1374213.htm

相关推荐

封面图片

暗物质依然 "黑暗" - 科学家利用原子钟揭示新奥秘

暗物质依然"黑暗"-科学家利用原子钟揭示新奥秘PTB的研究人员利用灵敏的原子钟寻找超轻暗物质影响精细结构常数的证据,但没有发现明显的变化,从而完善了我们对暗物质潜在相互作用和常数随时间变化稳定性的理解。一种特别有前景的理论方法暗示,暗物质可能由极轻的粒子组成,其行为更像是波而不是单个粒子:即所谓的"超轻"暗物质。在这种情况下,以前未被发现的暗物质与光子之间的微弱相互作用将导致精细结构常数的微小振荡。精细结构常数是描述电磁相互作用强度的自然常数。它决定了原子能量标度,从而影响了原子钟中用作参考的转变频率。由于不同的跃迁对常数的可能变化具有不同程度的敏感性,因此原子钟的比较可用于寻找超轻暗物质。为此,PTB的研究人员现在使用了一种原子钟,它在这种搜索中对精细结构常数的可能变化特别敏感。为此,在长达数月的测量中,将这一灵敏的原子钟与灵敏度较低的另外两个原子钟进行了比较。测量数据被用于研究超轻暗物质的特征--振荡。由于没有发现明显的振荡,暗物质仍然是"暗"的,即使经过更仔细的检查也是如此。由于没有发现信号,因此无法探测到神秘的暗物质,但可以对超轻物质与光子之间可能的耦合强度确定新的实验上限,以前的上限在很大范围内提高了一个数量级以上。与此同时,研究人员还研究了精细结构常数是否会随着时间的推移而发生变化,例如非常缓慢地增加或减少。数据中没有检测到这种变化。在这里,现有的限制也被收紧,表明即使在很长一段时间内,常数也保持不变。与以往的时钟比较不同,在以往的比较中,每个原子钟都需要自己的实验系统,而在这项工作中,三个原子钟中的两个是在一个实验装置中实现的。为此,使用了单个被俘离子的两种不同跃迁频率:离子在两个光学转变频率上交替接受询问。这是朝着使光学频率比较更加紧凑和稳健迈出的重要一步--例如,用于未来在太空中寻找暗物质。...PC版:https://www.cnbeta.com.tw/articles/soft/1376071.htm手机版:https://m.cnbeta.com.tw/view/1376071.htm

封面图片

在太阳附近运行的原子钟可以探测暗物质

在太阳附近运行的原子钟可以探测暗物质我们每天在周围看到的物质只占宇宙中质量的15%左右。另外的85%归功于一种奇怪的、看不见的物质,它不反射也不发光,因此它的名字听起来很诡异,叫做暗物质。然而,它确实通过与光和物质的引力相互作用来表明自己的存在,而且其存在的证据不断增加。但令人沮丧的是,尽管科学家们经过了几十年的探索,但最好的证据--直接探测--仍然没有得到。根据不同模型的预测,已经进行了实验来探测暗物质的特性,它可能有也可能没有。最常见的主题是在地下深处放置一个巨大的检测器材料罐,远离干扰,等待暗物质粒子撞上罐中的原子核的罕见情况。其他实验则观察一些假设的暗物质粒子被预测为会产生的电磁效应。到目前为止,这些实验都没有发现这种东西的任何迹象。但也许这是因为我们一直自己在错误的地方寻找。模型显示,太阳系中密度最高的暗物质将在太阳附近,所以一项新的研究建议我们从那里开始寻找。来自KavliIPMU、加州大学欧文分校和特拉华大学的研究人员概述了一种探测太阳附近暗物质的潜在新方法。在那里,这种物质的密度应该足够高,其预测的信号应该比在地球上要清晰得多。在暗物质粒子具有极小质量的模型中,它们将被预测为引起自然界某些常数的振荡,例如电子的质量或电磁力的强度。这些变化将反过来影响原子的能量,因为它们在不同状态之间转换。由于原子钟是通过测量原子在不同状态之间转换时发出的光子的频率来工作的,所以它们应该能够检测到暗物质何时导致这些振荡。"实验周围的暗物质越多,这些振荡就越大,所以在分析信号时,暗物质的局部密度非常重要,"该研究的作者JoshuaEby说。重要的是,该团队表示,进行该实验所需的技术已经存在。原子钟被广泛用于保持航天器的同步性,而帕克太阳探测器的特殊屏蔽已经证明了近太阳轨道是可以做到的。"长距离的太空任务,包括未来可能的火星任务,将需要特殊的计时,就像太空中的原子钟所提供的那样,"Eby说。"一个可能的未来任务,其屏蔽和轨迹与帕克太阳探测器非常相似,但携带一个原子钟装置,可能足以进行搜索。"虽然目前还没有关于这一概念何时或是否可能被付诸行动的消息,但这是一个令人感兴趣的想法。描述这一想法的论文发表在《自然天文学》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1334489.htm手机版:https://m.cnbeta.com.tw/view/1334489.htm

封面图片

我国建立首个极深地下实验室:深度2400米 专门寻找“暗物质”

我国建立首个极深地下实验室:深度2400米专门寻找“暗物质”据央视新闻报道,为了研究深空中看不见摸不着的暗物质,中国建立了首个极深地下实验室——“中国锦屏地下实验室”。这个实验室垂直岩石覆盖达2400米,是世界岩石覆盖最深的实验室。PC版:https://www.cnbeta.com/articles/soft/1330421.htm手机版:https://m.cnbeta.com/view/1330421.htm

封面图片

在太空中部署一个原子钟 - 揭开暗物质秘密的新方法

在太空中部署一个原子钟-揭开暗物质秘密的新方法这些搜索的一个关键组成部分是关于暗物质局部密度的假设,它决定了在任何给定时间内通过探测器的暗物质粒子的数量,从而决定了实验灵敏度。在一些模型中,这个密度可能比通常假设的要高得多,而且暗物质在某些区域比其他区域更加集中。一类重要的实验搜索是使用原子或原子核的搜索,因为这些搜索对暗物质的信号取得了相当高的灵敏度。这是可能的,部分原因是当暗物质粒子具有非常小的质量时,它们会在自然界的常数中引起振荡。这些振荡例如电子的质量或电磁力的相互作用强度的振荡以可预测的方式改变原子和原子核的过渡能量。艺术家对用于揭示暗物质的空间原子钟的印象。资料来源:卡弗里IPMU一个国际研究小组,加州大学欧文分校卡弗里宇宙物理与数学研究所(KavliIPMU)项目研究员JoshuaEby、博士后Yu-DaiTsai和特拉华大学教授MariannaS.Safronova,从这些振荡信号中看到了潜力。他们表示,在太阳系的一个特定区域,即水星和太阳的轨道之间,暗物质的密度比较大,这将意味着对振荡信号的异常敏感。这些信号可以被原子钟接收到,原子钟通过仔细测量原子中不同状态转换时发出的光子的频率来运行。在时钟实验附近的超轻暗物质可以修改这些频率,因为暗物质的振荡会稍微增加和减少光子的能量。"实验周围的暗物质越多,这些振荡就越大,所以在分析信号时,暗物质的局部密度非常重要,"埃比说。虽然太阳附近暗物质的精确密度并不为人所知,但研究人员认为,即使是一个相对低灵敏度的搜索也能提供重要的信息。在太阳系中,暗物质的密度只受到有关行星轨道信息的制约。在太阳和水星(离太阳最近的行星)之间的区域几乎没有约束。因此,在航天器上进行的测量可以迅速发现这些模型中暗物质的世界领先的限制。对他们的理论进行测试的技术已经存在。埃比说,美国宇航局的帕克太阳探测器自2018年以来一直在运行,它比历史上任何人造飞船都更接近太阳,目前正在水星的轨道内运行,并计划在一年内更接近太阳。"长距离的太空任务,包括未来可能的火星任务,将需要特殊的计时,就像太空中的原子钟所提供的那样。"Eby说:"一个可能的未来任务,其屏蔽和轨迹与帕克太阳探测器非常相似,但携带一个原子钟装置,可能足以进行这种搜索。"他们的研究细节于12月5日发表在《自然-天文学》上。...PC版:https://www.cnbeta.com.tw/articles/soft/1336749.htm手机版:https://m.cnbeta.com.tw/view/1336749.htm

封面图片

澳大利亚暗物质探测器以独特的优势加入寻找行列

澳大利亚暗物质探测器以独特的优势加入寻找行列据NewAtlas报道,南半球的第一个暗物质探测器已经正式启用。斯托尔地下物理实验室(SUPL)建在澳大利亚一个废弃的金矿中,其目的是利用其在全球的独特位置,最终从被认为充斥着宇宙的神秘物质中获取信号。几十年的天文观测表明,宇宙中的事物远不止眼前所见。根据我们可以看到的物质的质量,引力效应是说不通的,这导致天体物理学家推断,那里有更多我们看不到的物质。这种所谓的暗物质不会发射或与光相互作用,也很少与正常物质相互作用。偶尔,一个暗物质粒子可能会撞上一个常规物质的原子,并产生一个可探测的信号--尽管它们通常不可能从我们周围不断发生的所有其他互动中区分出来。但是,如果你去除所有这些干扰,理论上你应该能够探测到暗物质。这就是这个新设施背后的想法。SUPL建在地下1公里(0.6英里)处,以阻止宇宙射线到达仪器。探测器周围还有大约100吨的钢和聚合物屏蔽,以及一个液体闪烁器系统,有助于消除假阳性反应。探测器本身是一个装有50公斤(110磅)超纯碘化钠晶体的罐子,如果被呼啸而过的粒子击中,它将发出闪光。极其敏感的光探测器一直在观察这个罐子,以寻找任何此类信号。像中微子这样的其他粒子也能产生类似的闪光,但这些通常也会同时在液体闪烁体中产生信号。任何只发生在碘化钠中的闪光都可能变成难以捉摸的暗物质。整体设计对于像XENON1T和LUX这样的暗物质探测器来说是很常见的,它们使用液态氙作为探测器的体积,其他提议的使用超流体氦或过冷水的设计也是基于类似的原理。但是SUPL的主要优势在于其位置。以前的暗物质探测器都集中在北半球,所以在世界的另一端建造一个探测器可以帮助确认或排除这些早期实验报告的一些有趣的信号。例如,SUPL的姐妹设施——意大利格兰萨索国家实验室,已经发现暗物质候选信号似乎在每年6月达到高峰。乐观的解释是,这与地球轨道上的一个点相对应,在这个点上,当太阳系在银河系中移动时,地球正迎面飞过暗物质粒子的“风”。当然,悲观的解释是,其他季节性因素,如湿度波动,也在发挥作用。具有反季节性的SUPL可以帮助回答这个问题。如果它也能在每年六月检测到大量的信号涌入,这将是暗物质“风”假说的非常有力的证据。另一方面,如果它的峰值出现在12月左右,这将表明来自夏季天气的干扰。无论结果如何,SUPL都将是一个引人关注的实验室。PC版:https://www.cnbeta.com/articles/soft/1306389.htm手机版:https://m.cnbeta.com/view/1306389.htm

封面图片

中子星碰撞事件GW170817帮助揭开暗物质之谜

中子星碰撞事件GW170817帮助揭开暗物质之谜两颗正在合并的中子星的艺术家插图。资料来源:NSF/LIGO/索诺玛州立大学/A.Simonnet类轴子粒子研究文理学院的物理学家布帕尔-德夫(BhupalDev)利用这次中子星合并的观测结果--天文学界将这一事件命名为GW170817--得出了关于类轴子粒子的新约束条件。这些假想粒子尚未被直接观测到,但它们出现在标准物理学模型的许多扩展中。轴子和类轴子粒子是构成科学家至今无法解释的宇宙中部分或全部"缺失"物质或暗物质的主要候选粒子。至少,这些相互作用微弱的粒子可以作为一种门户,将人类所知的可见部分与宇宙中未知的黑暗部分连接起来。《物理评论快报》(PhysicalReviewLetters)上这项研究的第一作者、该大学麦克唐纳空间科学中心(McDonnellCenterfortheSpaceSciences)的研究员德夫说:"我们有充分的理由怀疑,超越标准模型的新物理学可能就潜伏在不远处。"中子星合并的启示当两颗中子星合并时,会在短时间内形成一个高温、高密度的残余物。德夫说,这个残余物是产生奇异粒子的理想温床。残余物会在一秒钟内变得比单个恒星热得多,然后根据初始质量的不同,沉淀为一颗更大的中子星或黑洞。在这幅动画中,注定要灭亡的中子星呼啸着走向灭亡,它代表了在GW170817发生九天后观测到的现象。图片来源:美国宇航局戈达德太空飞行中心/CI实验室这些新粒子悄无声息地逃离了碰撞的碎片,在远离其源头的地方,可以衰变成已知的粒子,通常是光子。德夫和他的团队(包括华盛顿大学校友史蒂文-哈里斯(现为印第安纳大学NP3M研究员)以及让-弗朗索瓦-福尔廷、库弗-辛哈和张永超)发现,这些逃逸的粒子会产生独特的电磁信号,可以被美国宇航局的费米-LAT等伽马射线望远镜探测到。研究小组分析了这些电磁信号的光谱和时间信息,确定他们可以将这些信号与已知的天体物理背景区分开来。然后,他们利用费米-LAT关于GW170817的数据,推导出轴子-光子耦合作为轴子质量函数的新约束条件。这些天体物理约束与实验室实验(如轴子暗物质实验(ADMX))的约束相辅相成,后者探测的是轴子参数空间的不同区域。粒子物理学的未来前景未来,科学家们可以利用现有的伽马射线太空望远镜(如费米-LAT)或拟议中的伽马射线任务(如华盛顿大学领导的先进粒子-天体物理学望远镜(APT)),在中子星碰撞期间进行其他测量,帮助提高他们对类轴心粒子的理解。德夫说:"中子星合并等极端天体物理环境为我们寻找轴子等暗部门粒子提供了新的机会之窗,轴子可能是了解宇宙中缺少的85%物质的关键。"编译自/scitechdaily...PC版:https://www.cnbeta.com.tw/articles/soft/1423415.htm手机版:https://m.cnbeta.com.tw/view/1423415.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人