韩国室温超导第一作者要求撤稿:有缺陷 完善后转投正规期刊

韩国室温超导第一作者要求撤稿:有缺陷完善后转投正规期刊已将总结完善后的研究结果投给正规学术期刊,很快就会接受同行评审验证。与此同时,另一篇6人合著但权英完已不在作者列表的论文,却刚刚更新了版本。除了修正格式转换产生的小错误外,还新增了另一个样本的测试结果。总之,事情并不简单。但抛开这边韩剧式抓马,全球各团队的材料复现和理论验证,也都有了新进展。实验一边,B站华科团队、知乎“半导体与物理”分别上传了样品半磁悬浮现象视频。理论一边,中科院沈阳所与美国劳伦斯伯克利国家实验室又分别发表了支持LK99可能存在超导效应的理论研究。甚至还有网友上传了一段完全磁悬浮演示视频,但来源未知且未经验证。有人根据视频中的字母猜测可能来自比利时根特大学。接下来,挨个看看这些进展的细节。B站、知乎均有复现视频发布昨天下午,B站账号关山口男子技师发布验证视频,并宣布:华中科技大学材料学院博士后武浩、博士生杨丽,在常海欣教授的指导下,成功首次验证合成了可以磁悬浮的LK-99晶体,该晶体悬浮的角度比SukbaeLee等人获得的样品磁悬浮角度更大,有望实现真正意义的无接触超导磁悬浮。从视频中可以看出,显微镜下样品随着磁体的靠近和远离,不停地倒下或立起,无论S极还是N极都有效,即排斥和磁极无关,显现出抗磁性。晚8点,知乎账号半导体与物理也更新了测试视频,并表示“抗磁,半悬浮”,与华中科大团队测试结果基本一致。但验证抗磁性还不能完全证明两个团队制备的样品具备超导特性,更关键的验证在于测量电阻。图“微纳加个”应为“微纳加工”的笔误但华中科大团队表示,目前只有一小片成功样品,而测量电阻会破坏样品,正在紧急赶制第三批。材料有了初步复现结果的同时,理论验证也出现新的突破。第一性原理计算LK99电子结构中科院沈阳所与美国劳伦斯伯克利国家实验室分别发表论文,用第一性原理计算分析了LK99材料的电子结构。两篇论文结论相似,都为LK99材料可能存在的室温超导效应提供了理论支持。但两项研究具体方法又略有区别,可以互为补充。两篇论文都采用了密度泛函理论(DFT,Densityfunctionaltheory)工具VASP,分析LK-99母体化合物铅磷灰石以及掺杂铜之后的电子结构。不同之处在于,中科院沈阳所分析了LK99原论文提出的Pb10(PO4)6O,美国团队选择了另一种X射线衍射方法产生的变体Pb10(PO4)(OH)2。两篇论文都指出,在掺杂铜之前母体化合物是绝缘体。掺杂铜之后替代了一部分铅,会导致体积收缩,进而产生全局的结构重构,并在费米级附近出现平坦能带。平坦能带与超导关键参数电子态密度有关,是实现超导的重要特征之一。此外,中科院沈阳所论文还在平坦能带附近观察到了4个范霍夫奇点(VanHovesingularity)。范霍夫奇点的存在通常预示着材料可能会发生磁性、电荷密度波或超导等电子相变。在高温超导研究中,有人认为超导配对就发生在这些奇异点附近。最后,中科院沈阳所论文还计算了掺杂金、银、镍、锌元素的情况,其中掺杂金与铜的结果接近。OneMoreThing实验和理论研究都出现突破,也把室温超导话题抬上了新的高度。虽然还没有完全得到验证,也有不少人开始畅想这种材料应用后带来的影响。著名苹果公司分析师郭明𫓹发文表示“常温超导若实现,iPhone可匹敌量子计算机”。华中科大验证视频:https://www.bilibili.com/video/BV14p4y1V7kS/“半导体与物理”验证视频:https://www.zhihu.com/question/613850973/answer/3136586869未知来源完全磁悬浮视频:https://twitter.com/VasutTomas0423/status/1686423440214118400中科院沈阳所论文:https://arxiv.org/abs/2307.16040美国劳伦斯伯克利国家实验室论文:https://arxiv.org/abs/2307.16892韩联社报道:https://v.daum.net/v/20230728182738637...PC版:https://www.cnbeta.com.tw/articles/soft/1374659.htm手机版:https://m.cnbeta.com.tw/view/1374659.htm

相关推荐

封面图片

华科初步复现韩国室温超导材料?实验视频B站播放量超137万

华科初步复现韩国室温超导材料?实验视频B站播放量超137万究竟是什么视频能这么火爆?该UP主在视频下方介绍称:“华中科技大学材料学院博士后武浩、博士生杨丽,在常海欣教授的指导下,成功首次验证合成了可以磁悬浮的LK-99晶体,该晶体悬浮的角度比SukbaeLee等人获得的样品磁悬浮角度更大,有望实现真正意义的无接触超导磁悬浮。”这段视频公布后,微博话题“华科初步复现韩国室温超导材料”也引起热议,微博网友和B站网友都在持续讨论。该UP主表示,目前只验证了迈斯纳效应,还未测电阻。目前合成成功的晶体非常小,实在是不敢动,正在加急烧第三批炉子。有B站网友评论称:“视频中的超导材料就好像一片脆弱的蝴蝶翅膀,而它煽动的飓风将覆盖整个人类社会。”究竟结果如何,我们也将持续跟进,LK-99验证B站视频(点此观看)...PC版:https://www.cnbeta.com.tw/articles/soft/1374383.htm手机版:https://m.cnbeta.com.tw/view/1374383.htm

封面图片

协作者回应“首个室温常压超导体”:内容有缺陷

协作者回应“首个室温常压超导体”:内容有缺陷论文作者:未经允许上传论文目前在arXiv上,讨论LK-99超导体的论文一共有两篇,最近引发讨论的是这篇。论文里,研究人员通过改良一种铅-磷灰石结构,用铜离子取代铅离子,产生应力,在微结构中引发畸变,从而可以在127℃以下表现出超导性,并发现了一种新超导被命名为LK-99。除了这篇,研究团队还同时发布了另一篇论文,Hyun-TakKim是这篇论文作者之一。第二篇论文详细解释了带来新突破的材料LK-99,而这也是第一篇(首个室温常压超导体)论文的核心所在。其中的协作者之一Hyun-TakKim,是美国威廉玛丽学院的物理学教授,主攻凝聚态物理、量子信息科学领域,论文引用量已超8000次。论文发布后,Hyun-TakKim接受《新科学家》说,两篇论文都使用了相同的方法,但“首个室温常压超导”这篇里有许多缺陷,并气愤表示:没有经过自己允许就把论文上传到arXiv上。此外,他也对论文中出现“迈斯纳效应”进行了解释。按照他的叙述,虽然有视频证明出现了“迈斯纳效应”,但只有一个平面呈悬浮状,因此实际上只有一部分成为超导体。另外,还有一件值得玩味的事。其实早在今年4月就有关于LK-99的研究,发布在“韩国晶体生长与晶体技术杂志”上。其中,arXiv这两篇论文的作者都在列表,唯独没有“Hyun-TakKim”。不仅如此,其中一些人甚至在2022年8月就申请了LK-99的专利。根据这些事实,可以发现其实在2022年8月这个团队就已发现LK-99超导体。然后团队申请了专利,到2023年4月在韩国本土发布论文,并于7月再联合Hyun-TakKim教授在arXiv上发布。同一时间,团队里的“三位韩国本土学者”又单独发了篇论文,并用首个室温常压超导的词语来描述研究。对于此次论文作者只有三人,OpenAI技术研究员TedSanders暗戳戳表示:诺贝尔奖一次最多获奖就是三人(目的不单纯呐)。业界褒贬不一众所周知,arXiv上的论文都是未经过业界同行评审(peerreview),且此前这个领域多次发生乌龙。所以看到这篇“室温常压超导论文”,很多学者、大牛也是纷纷拿起放大镜,仔细查找是否有问题。一部分学者就发现,论文里有不少重要数据都缺失了。比如,论文只是用一个磁悬浮实验结果,来证明出现“迈斯纳效应”,并没有磁化率的数据。而磁化率是判断材料是否进入超导态的重要依据之一。(材料进入超导态的两个依据:磁化率在某种条件下突变为-1,具备完全抗磁性;电阻突然消失,具备绝对0电阻)对此,牛津大学的材料科学教授SusannahSpeller就表示,没有对应数据支撑,说发现室温常压超导体还为时过早。另外,还有人提出论文里认为,量子阱之间的电子隧穿间隔在3.7和6.5埃米之间也很奇怪,希望能解释一下涉及到电子配对机制。此外,在实验约400k的高温下,LK-99在超导状态下其实无法携带太多电流。根据论文,研究团队在389K(约125℃)时出现了电压等于0的情况,但同时临界电流仅为7毫安左右,这与实用化标准的1000安量级相比,差距几乎是10万倍。对于实用性的质疑,有一部分学者认为:这就是科学,不要只揪着一点错误不放。并表示,根据论文复制实验应该很快,可以等一等,并科普室温常压超导体会给实际生活带来一系列巨大影响。甚至还直接放出这张满是磁悬浮的未来生活图,畅想了一波。无论结果怎样,这篇论文已经在业界引起很大关注,不知行业大咖能否复现实验。最后,就像网友说的,科学就是要质疑,不接受质疑的就是“伪科学”。...PC版:https://www.cnbeta.com.tw/articles/soft/1373431.htm手机版:https://m.cnbeta.com.tw/view/1373431.htm

封面图片

华科复现韩国室温超导,这回是真的?

华科复现韩国室温超导,这回是真的?从7月22日论文发布至今,一周过得很快。目前参与复现的实验室中,印度的新德里CSIR国家物理实验室已经宣告复现失败,北京航空航天大学的复现结果亦不理想,且在复现过程中发现LK-99的特性更像是半导体。8月1日下午,一个ID为“关山口男子技师”的b站up主,发布了一则名为“LK-99验证”的视频。视频中的实验复现了近日韩国公布的常温常压超导材料的抗磁性,也就是被复现的材料确实可以磁悬浮。b站视频“LK-99验证”视频介绍中称,该实验由华中科技大学材料学院博士后武浩、博士生杨丽,在常海欣教授的指导下,成功首次验证合成了可以磁悬浮的LK-99晶体,该晶体悬浮的角度比SukbaeLee等人获得的样品磁悬浮角度更大,有望实现真正意义的无接触超导磁悬浮。因为复现材料过小,目前该华中科技大学团队仅复现了LK-99的抗磁性,该材料是否为零电阻还要等再烧一炉材料才知道。饱受质疑的小团队在这则“LK-99验证”的视频发布之前,8月1日早些时候,美国劳伦斯国家实验室发布了一篇简短的分析,利用计算机模拟显示,LK-99为常温常压超导材料的可能性很大。直到劳伦斯国家实验室发布消息前,学界对这次的新材料仍持高度怀疑态度。这种怀疑一方面是因为科研工作者“天生多疑”,另一方面则是因为这个韩国团队,确实不太“出名”。这次发现LK-99的韩国团队Suk-baeLee和Ji-hoonKim,是韩国高丽大学Tong-ShikChoi 教授的学生。在1999年的一次实验中,他们偶然发现实验品的观测数据中有一个微弱的信号,这是只有超导体才会出现的观测信号。但是当时的课题组反复实验,也没有最终制作出产生这个信号的材料。此后,Suk-baeLee和Ji-hoonKim先后离开了高丽大学的实验室,并创办了一家量子能源研究中心Q-Centre。此后数年,两人一直“不咸不淡”地经营着这家量子技术公司。直到2017年Tong-ShikChoi教授去世,他在临终之际对两位后辈提出嘱托,希望他们能继续进行超导材料的研究。在那之后,或许是受了老教授的鼓舞,或许是唤起了年轻热血,亦或许是Q-Centre的业绩确实不尽如人意。Suk-baeLee和Ji-hoonKim二人,再度投身到LK-99的研究中。2020年,二人第一次向Nature投递了关于超导材料的论文。然而好巧不巧,当时正赶上了RangaP.Dias超导论文被学界证伪的风波。这位Dias就是5个月前刚刚在常温超导研究方面“再摔跟头”的美国罗切斯特大学团队。由此,LK-99的第一篇论文被Nature拒收。2021年,两人为LK-99在韩国申请专利,2023年3月专利申请通过后,LK-99的论文才发布在了论文档案库arXiv上,接受同行评审和实验验证。LK-99相关论文发布在在arXiv“名不见经传的二人组”“跨领域创业多年后回归研究”“科研实力一般的韩国高校”“隔壁论文的不良影响“等等问题,都使得LK-99在学界的样子看起来不那么“可信”。除此之外,在他们发表的论文中,也有一些地方与主流的超导理论背道而驰。《科技日报》援引南京大学超导物理和材料研究中心主任闻海虎观点:韩国团队所展示的并非超导现象,而是超导假象。根据数据猜测,可能LK-99材料本身存在非常微弱的抗磁,与重力达到某种平衡以后,形成了一个微软的磁悬浮状态,事实上并非超导磁悬浮。事实上,绝对的科研实力对于超导材料来说,并不一定是最重要的,因为超导材料的研究中确实有很大的运气成分,就像炼金术,只要不断把各种东西丢到炉子里烧,不一定什么时候就能烧出好东西。LK-99的实验过程中就有记录一次“意外”导致样品中混入氧气从而取得了意想不到的实验结果。复现≠可复制在常温常压超导材料被证实以前,低温、高温超导技术在全球早已有商业化应用,已经在生活中出现的磁悬浮列车就是其中之一。市场研究机构IMARC在2022年发布的一则报告中显示,2021年全球超导材料市场规模已达到9.026亿美元,预计2027年将达到22.902亿美元,2022年至2027年间的增长率(CAGR)为17.3%。传统超导技术被广泛应用在医疗、军事、能源等领域。2021年,上海就已经投运了全球第一条千伏公里级超导电缆。而超导技术更大的发展前景还在于其中最重要的就是核聚变的研究和应用。“超导体产生的强磁场可以作为磁封闭体,将反应堆中的超高温等离子体包围并约束起来。”中科创星创始合伙人米磊曾告诉虎嗅,“室温超导”有望解决磁约束核聚变的核心问题,将大幅提高后者的商业化进程。目前,全球最大的核聚变联合项目,国际热核聚变实验堆(简称“ITER”:InternationalThermonuclearExperimentalReactor)就正在利用低温超导技术,制造超导托卡马克HT-7实验装置。7月26日,中国科技部公布的最新8个ITER职位空缺中,就包含与低温超导相关的2个低温工程师职位。全超导托卡马克装置常温常压超导实现后,应用领域将进一步拓宽。包括众所周知的无损耗电能传输、磁悬浮交通工具、高效能电机和发电机,以及利用核磁共振的医疗成像,量子计算、大型粒子加速器、能源存储、高灵敏度传感器等。只要跟“电”相关的领域,就会被超导材料革命。这与上半年爆火的AI大有不同,AI大语言模型是先技术再找场景。超导技术似乎正好相反,已经有大量可能的应用场景排队等着上马,但超导技术还太不成熟。尽管学界还没有完全证实LK-99的真实性,关注超导的资本已经提前杀入搅局了。美国东部时间8月1日,美国相关概念股美国超导(AMSC)盘前大涨150%,盘中涨幅最高约70%,收盘报16.13美元,涨60.02%。然而截至发稿,该股盘后涨幅已回落至-1.05%。由于华中科技大学的视频发布于北京时间8月1日的15:00后,国内各股均以收盘。但超导概念仍整体涨了4.61%,5只个股涨停。类似的情况在5个月前,美国罗切斯特大学的物理学家RangaP.Dias及其团队宣称发现常温超导材料时,也出现过一次。本次涨停的永鼎股份、百利电气等多只“超导”板块概念股,在当时也都集体一字涨停,不过在上次“常温超导”哑火之后,这些股票也大多出现了价格回踩。由此可见,如果常温常压超导技术真的到来了,那么此前炒作AI的热钱有可能很快就会涌入新的炒作标的。不过,对于超导材料的商业化问题,多数人认为不会很快。从理论,到实验,再到同行评审验证,量产。通常一个诺奖级的技术要拿上诺贝尔奖都得等个几年甚至十几年。要看到这项技术真正商业化落地,还要考虑很多与钱相关的问题。“现在讨论这些问题太早,室温超导现阶段远远不具备商业化的条件,仅从材料制备来看,成本能否得到控制都还是个未知数。”米磊表示,室温超导的商业化落地时间现在还无从判断。...PC版:https://www.cnbeta.com.tw/articles/soft/1374485.htm手机版:https://m.cnbeta.com.tw/view/1374485.htm

封面图片

室温超导疑云尘埃落定?韩国学者:无法认定LK-99为常温超导体 未表现出迈斯纳效应

室温超导疑云尘埃落定?韩国学者:无法认定LK-99为常温超导体未表现出迈斯纳效应截至发稿,美国超导(AMSC.US)$盘前跌超18%,报9.38美元/股。据韩联社报道,由韩国超导学会组建的“LK-99验证委员会”表示,从arXiv上发表的论文数据(未经同行评审)、相关视频来看,韩国量子能源研究所团队合成的LK-99似乎不具备“迈斯纳效应”。LK-99所谓迈斯纳效应,亦即超导体特有的“完全抗磁性”。普通的材料在磁场中,磁力线通常会穿过它们,但超导体内部的磁场恒等于0,它可以把磁力线完全弹开,悬浮在空中。验证委员会对韩联社表示,除了迈斯纳效应,超导体在与磁铁反应时,还会表现出“磁通钉扎”效应,即超导体会固定在磁铁上方特定位置。LK-99的悬浮视频与磁通钉扎效应相去甚远,视频显示,LK-99悬浮时并不稳当,会在空中不停摇晃。此外,LK-99研究团队也在上传到arXiv的论文中承认,在与磁铁反应时,能够悬浮在空中的只有一部分样品,而非完整样品。验证委员会认为,样品可能只是只是因为磁性互斥而远离下方的磁铁,并不是体现出了迈斯纳效应。图片来源:原始论文此外,验证委员会还指出,论文中的数据也不同于典型的超导体图表。对于超导体来说,磁化率在临界温度时会归零,但LK-99显示的是负值。验证委员会认为,虽然LK-99的磁化率变化图显示出了抗磁性,但抗磁性本身并不能证明超导性,很多即使不是超导体的材料同样具备抗磁性。受访的验证委员会成员对韩联社表示:我们的立场没有改变,目前的数据不足以证明LK-99是室温超导体。值得指出的是,上述的验证是在未接触LK-99样品的情况下进行的。验证委员会已经要求韩国量子能源研究所团队提供LK-99样品,但该团队表示,由于其提交的论文正在审核中,暂时无法提供样品,需要等到审核完成,据悉可能需要2-4周的时间。受访的验证委员会成员表示,一旦能够接触样品,只需要测量其磁化率和电阻,看看LK-99是否具备超导体的完全抗磁性和零电阻,很快就能真相大白。...PC版:https://www.cnbeta.com.tw/articles/soft/1374827.htm手机版:https://m.cnbeta.com.tw/view/1374827.htm

封面图片

韩国学会:尚未有任何结果证实“LK-99”超导性

韩国学会:尚未有任何结果证实“LK-99”超导性“LK-99”评估委员会如何看待量子能源研究中心发表的研究?该委员会的验证工作是如何进行的?目前进展如何?他们又如何看待中国有关团队的复现工作?8月9日,韩国超导和低温学会“LK-99”评估委员会向《中国科学报》书面回应了上述问题。该委员会称,他们目前在两只脚走路,一方面自己复现“LK-99”实验,另一方面希望从量子能源研究中心获取样本,并对其进行交叉测量。对于中国有关团队的实验,该委员会称,无论华中科技大学的工作还是东南大学的工作,都没有证明“LK-99”的室温超导性质。韩国超导和低温学会:根据迄今为止发表的论文和视频,我们无法确认“LK-99”是“常压下的室温超导体”。原因如下:首先,量子能源研究中心论文数据并没有表现出典型超导体的特征。在电阻图中,电阻不为零,只是表现出临界温度附近绝缘体到金属转变的温度-电阻行为。此外,超导体通常在临界温度以上磁化率会回归接近零,但在“LK-99”中仍然保持显著负值,这在超导体中并不典型。其次,在发布的视频中,样本的运动也可以在非超导体材料中观察到。在视频中,“LK-99”在磁铁上方漂浮,但始终有一部分接触磁铁,并且在磁铁移动后似乎出现了振荡。这些特性与超导体的磁悬浮特性不一致。该论文声称样品只能部分悬浮是因为样本还不够完美,但磁铁和样品之间存在吸引力,这可以解释为一种相对排斥力让样品与磁铁保持了一定距离。这些观察结果表明,论文中提出的结果不足以确认“LK-99”是超导体,需要进一步的研究来证实或否定“LK-99”是室温超导体的可能性。一旦量子能源研究中心提供样本,我们将与几个独立机构共享,以测量作者在论文中呈现的数据。通常,我们会多次使用超导量子干涉仪(SQUID)传感器测量样品的电阻和磁化率,接下来对观察到的结果进行分析并召开正式会议以得出验证结论。验证分为两种方式进行。首先,我们将按照论文中提出的方法自行复制“LK-99”样品,并测量其在室温和大气压下的超导性能。目前有3家实验室正在进行这项工作。(编者注:据韩国超导和低温学会公开信息,这3家实验室为成均馆大学量子材料及超导研究中心、高丽大学超导材料及应用研究中心、首尔大学复杂材料新形态研究中心。)即使我们没有在自己的样品中观察到超导特性,量子能源研究中心生产的原始样品也有可能在室温和大气压下是超导体。因此,我们还需要从量子能源研究中心获取样本,并对其进行交叉测量。一旦我们收到量子能源研究中心的样本,将会立即进行交叉测量。关于“LK-99”的开发和发布,我们不知道之前有任何会议报告或论文。我们已在请求样本,并在得到样本后进行交叉测量。截至2023年8月4日上午,尚未有任何结果证实“LK-99”超导性。包括美国劳伦斯伯克利国家实验室在内的几个理论研究小组,已经通过模拟讨论了“LK-99”超导的可能性。然而,目前尚无理论可以解释在室温和大气压下发生超导现象,因此仅靠模拟结果尚不足以确认“LK-99”的超导性。中国华中科技大学研究团队8月4日发布的一段视频和相关ArXiv论文,声称已经成功复制了“LK-99”,但这还不是最终的验证,因为视频中的磁悬浮并不稳定,且未出现由磁通捕获引起的磁悬浮现象,而且研究人员自己也承认他们尚未证明电阻为零。中国东南大学合成了“LK-99”样品,并报告称在零下127摄氏度时出现了接近零的电阻率。然而,他们也表示在这些样品中没有观察到任何抗磁性,因此这个结果也不能被视为室温超导的证据。...PC版:https://www.cnbeta.com.tw/articles/soft/1376019.htm手机版:https://m.cnbeta.com.tw/view/1376019.htm

封面图片

中国科学团队宣布初步复现韩国超导晶体

中国科学团队宣布初步复现韩国超导晶体韩国科学团队宣布成功合成世界首个室温常压超导晶体后,中国一所大学的研究团队也宣布初步复现这一超导材料。中国线上视频平台哔哩哔哩动画(B站)UP主“关山口男子技师”星期二(8月1日)上传一段视频,宣称他们成功合成了能够磁悬浮的LK-99晶体,该晶体悬浮的角度比韩国量子能源研究中心合成的样品磁悬浮角度更大,有望实现真正意义的无接触超导磁悬浮。不过,接下来还需验证上述晶体能否在室温常压条件下实现零电阻,才能证明韩国团队的论文是否为真。视频简介显示,该UP主来自华中科技大学,其所在的团队是由华中科技大学材料学院教授常海欣带领,成员是博士后武浩、博士生杨丽。常海欣星期三(2日)也向财联社证实,该视频出自所属团队。视频发出后,迅速引起中国全网热烈讨论,并登上微博热搜。视频上传仅数小时,播放量就将近50万。截至星期四(3日)早上,视频已累积近890万播放量。韩国量子能源研究中心的团队7月22日在论文预印本网站arXiv上发表两篇论文,宣布成功合成世上第一个室温常压超导体“LK-99”,即在常压条件下,LK-99能够在127摄氏度以下表现超导特性。由于这一突破很可能彻底改变全球电力、交通、和晶片产业,上述宣布随即轰动全球科学界,带动美中韩一大批室温超导概念股暴涨。不过,国际物理学界对这份论文的真实性仍抱持巨大分歧。北京航空航天大学材料科学与工程学院和印度CSIR-国家物理实验室7月31日分别发表论文,显示自己复现的LK-99没有显示超导特性,与华中科技大学的实验结果不同。但美国劳伦斯伯克利国家实验室在arXiv上传的论文,结论则是支持LK-99作为室温环境压力超导体。期刊《科学》(Science)在7月27日刊登的一篇报告指出,LK-99的论文“欠缺细节,让物理学界普遍仍持怀疑态度”。韩国量子能源研究中心的团队更坦言,相关论文其实还没有完成且存在很多缺陷,是一名团队成员未经其他作者许可擅自发表的。...

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人