科学家推翻现有假设 拓扑学可能比以前认为的起着更次要的作用

科学家推翻现有假设拓扑学可能比以前认为的起着更次要的作用强激光照射拓扑材料,但光-物质响应特征是否包含有关材料拓扑的任何可提取信息仍不清楚。图片来源:JörgHarms,MPSD在过去的几十年里,拓扑学思想彻底改变了人们对电子结构和材料整体特性的认识。此外,拓扑学还促进了拓扑材料与电子应用的结合,为技术进步打开了大门。与此同时,拓扑结构的测量相当棘手,通常需要结合多种实验技术,如光电发射和传输测量。最近,一种被称为高次谐波光谱学的方法成为观察材料拓扑结构的关键技术。在这种方法中,材料受到强烈激光的照射。材料中的电子与激光之间的相互作用会产生宽带光学光谱,其中包含有关固体拓扑相的线索。在理论计算的帮助下可以提取这些线索,从而测量材料的拓扑结构。然而,德国汉堡马克斯-普朗克物质结构与动力学研究所的理论家们现在在《物理评论X》上报告说,他们在对拓扑绝缘体的高次谐波生成进行了首次自证研究后,没有发现任何普遍拓扑特征的证据。研究人员重点研究了铋原子单层中的量子自旋霍尔绝缘体和Na3Bi单层中的量子反常霍尔绝缘体,对拓扑高次谐波光谱学的基本假设提出了质疑:拓扑信息烙印在发射光谱上,随后可以被提取出来。领衔作者OferNeufeld解释说:"我们特意避免了常见的近似和简化模型。在这项庞大而彻底的分析中,我们无法发现任何普遍的拓扑特征,这表明这种特征不太可能存在。即使某些特征乍一看似乎与拓扑特性密切相关,但每当我们深入研究它们的起源时,却发现它们从来不是拓扑特性。"相反,系统的非拓扑方面主导了它的反应,这表明拓扑学可能比以前认为的起着更次要的作用。论文的第二作者尼古拉斯-坦科涅-德让解释说:"例如,固体对左或右椭圆偏振的激光会有不同的反应,最初看来,这种典型反应可能源于拓扑结构。然而,仔细观察后发现,这种效应源于晶体结构,而非拓扑结构。"研究小组的发现提出了拓扑结构在高度非线性光学应用中的潜在用途这一重要问题。从更积极的角度来看,MPSD理论家们强调,他们并没有完全排除高次谐波发生中存在拓扑特征的可能性。不过,他们认为,材料的其他非拓扑方面通常会主导所产生的光谱,例如带状结构、晶格对称性和参与轨道的化学性质。Neufeld总结说:"我们希望,我们的研究不仅能提供一个'警示故事',提醒其他人注意可能会误导的拓扑指纹,更重要的是,它将激励业界为如何通过非线性光学测量拓扑提出更复杂、更强大的想法。"...PC版:https://www.cnbeta.com.tw/articles/soft/1375177.htm手机版:https://m.cnbeta.com.tw/view/1375177.htm

相关推荐

封面图片

微观奇迹:可能改变量子研究与激光技术的光子拓扑绝缘体

微观奇迹:可能改变量子研究与激光技术的光子拓扑绝缘体研究中开发的光子拓扑绝缘体效果图。资料来源:伦斯勒理工学院伦斯勒理工学院(RensselaerPolytechnicInstitute)的研究人员制造出了一种比头发丝还细的装置,它将帮助物理学家研究物质和光的基本性质。他们的研究成果发表在《自然-纳米技术》(NatureNanotechnology)杂志上,还有助于开发更高效的激光器,这种激光器被广泛应用于医疗和制造等领域。该设备由一种名为光子拓扑绝缘体的特殊材料制成。光子拓扑绝缘体可以引导光子(构成光的波状粒子)进入材料内部专门设计的界面,同时还能防止这些粒子通过材料本身发生散射。由于这一特性,拓扑绝缘体可以使许多光子相干地像一个光子一样行动。这些设备还可用作拓扑"量子模拟器",即研究人员可以研究量子现象(在极小尺度上支配物质的物理定律)的微型实验室。"我们创造的光子拓扑绝缘体是独一无二的。它能在室温下工作。这是一个重大进步。以前,人们只能使用昂贵的大型设备在真空中对物质进行超冷却,才能研究这种机制。许多研究实验室都没有这种设备,因此我们的设备可以让更多人在实验室里从事这种基础物理研究。"RPI材料科学与工程系助理教授、《自然-纳米技术》研究报告的资深作者WeiBao说。Bao补充说:"这也是在开发运行所需能量更少的激光器方面迈出的充满希望的一步,因为我们的室温设备阈值(使其工作所需的能量)比以前开发的低温设备低七倍。"RPI的研究人员利用半导体行业用于制造微芯片的相同技术制造出了他们的新型设备,这种技术包括将不同种类的材料逐个原子、逐个分子地分层,以制造出具有特定性能的理想结构。为了制造这种装置,研究人员在金属卤化物过氧化物(一种由铯、铅和氯组成的晶体)上生长出超薄板,并在上面蚀刻出带有图案的聚合物。他们将这些晶体板和聚合物夹在各种氧化物材料的薄片之间,最终形成了一个厚约2微米、长宽均为100微米的物体(人类头发的平均宽度为100微米)。当研究人员用激光照射该装置时,在材料设计的界面上出现了一个发光的三角形图案。这种图案由装置的设计决定,是激光拓扑特性的结果。"能够在室温下研究量子现象是一个令人兴奋的前景。鲍教授的创新工作表明,材料工程学可以帮助我们回答一些科学上的重大问题,"RPI工程学院院长ShekharGarde说。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1433331.htm手机版:https://m.cnbeta.com.tw/view/1433331.htm

封面图片

科学家首次在室温下观察到拓扑绝缘体中的奇异量子态

科学家首次在室温下观察到拓扑绝缘体中的奇异量子态拓扑绝缘体是一种具有以独特方式传导电子的结构的材料。该材料的大部分是绝缘体,完全阻止电子流过。然而,在其表面和边缘的薄层是高度导电的,允许电子以高效率自由流动。鉴于这些奇怪的特性,拓扑绝缘体可以承载一些耐人寻味的量子态,对构建未来的量子技术可能很有用。但当然也有一个问题:大多数量子态是非常脆弱的,在面对干扰时就会崩溃。热,或热噪声,是一个主要的触发因素--当材料变暖时,其中的原子会以更高的能量振动,这就破坏了量子态。因此,大多数利用量子效应的实验和技术需要在接近绝对零度的温度下进行,在那里,原子的运动会直接减慢。但这反过来又使这些技术在更广泛的使用中不切实际。在新的研究中,普林斯顿大学的研究人员找到了一种解决方法,在室温下观察拓扑绝缘体的量子效应。他们选择的材料是一种被称为溴化铋的无机晶体化合物。这种材料被发现具有恰到好处的带隙,这是一个绝缘的“屏障”,电子无法在其中存在某些能量水平。这个带隙需要足够宽,以防止热噪音,但又不能太宽,以免破坏电子的自旋-轨道耦合效应,这对保持电子的稳定至关重要。溴化铋被发现有一个超过200毫电子伏特的带隙,正好在室温下保持量子状态稳定的“最佳位置”。研究小组通过观察所谓的量子自旋霍尔边缘状态证实了他们的发现,这是这些拓扑系统所特有的属性。研究人员说,这一突破将有助于推动自旋电子学等量子技术的发展,自旋电子学是一个新兴领域,它以比目前电子产品更高的效率将数据编码在电子的自旋中。“这实在是太可怕了,我们在没有巨大压力或超高磁场的情况下发现了它们,从而使这些材料更容易用于开发下一代量子技术,”该研究的共同第一作者NanaShumiya说。“我相信我们的发现将大大推动量子前沿的发展。”这项研究发表在《自然材料》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1331381.htm手机版:https://m.cnbeta.com.tw/view/1331381.htm

封面图片

科学家用量子材料产生类似"3D眼镜"的视角将拓扑材料可视化

科学家用量子材料产生类似"3D眼镜"的视角将拓扑材料可视化研究人员利用X射线(图中绿色部分),在金属TbV6Sn6上创造出了三维电影般的效果。通过这种方法,他们成功追踪到了电子(图中的蓝色和黄色)的行为,并在理解量子材料方面向前迈进了一步。图片来源:JörgBandmann/ct.qmat)为了区分拓扑材料和传统材料,科学家们习惯于研究它们的表面电流。然而,电子的拓扑结构与其量子力学波特性和自旋密切相关。现在,这种关系已经通过光电效应得到了直接证明--在光的作用下,电子从金属等材料中释放出来。维尔茨堡ct.qmat的创始成员、该项目的理论物理学家之一乔治-桑焦万尼(GiorgioSangiovanni)教授将这一发现比作用3D眼镜来观察电子的拓扑结构。他解释说"电子和光子可以被量子力学地描述为波和粒子。因此,电子具有自旋,我们可以利用光电效应测量电子的自旋。为此,研究小组使用了圆偏振X射线光--具有转矩的光粒子。桑焦万尼详细解释道:"当光子遇到电子时,量子材料发出的信号取决于光子是右旋还是左旋。换句话说,电子自旋的方向决定了左旋光束和右旋光束之间信号的相对强度。因此,我们可以把这个实验想象成3D电影院里的偏振眼镜,在那里也会使用不同方向的光束。我们的'3D眼镜'让电子的拓扑结构清晰可见"。由维尔茨堡-德累斯顿卓越研究小组ct.qmat(量子物质中的复杂性和拓扑学)领导的这一突破性实验及其理论描述,是从拓扑学角度描述量子材料特征的首次成功尝试。桑焦万尼指出了粒子加速器在实验中的重要作用,他说:"我们需要同步加速器来产生这种特殊的X射线光,并创造出'3D电影'效果"。研究人员历时三年,终于取得了这一巨大成功。他们的起点是量子材料"Kagome"金属TbV6Sn6。在这一类特殊材料中,原子晶格混合了三角形晶格和蜂窝状晶格,其结构让人联想到日本的花篮编织。鹿目金属在ct.qmat的材料研究中发挥着重要作用。"在我们的实验同事开始同步加速器实验之前,我们需要模拟实验结果,以确保我们走在正确的轨道上。第一步,我们设计了理论模型,并在超级计算机上进行了计算,"项目负责人、理论物理学家DomenicodiSante博士说,他同时也是维尔茨堡合作研究中心(SFB)1170ToCoTronics的准成员。测量结果与理论预测完全吻合,使研究小组能够直观地看到并确认可果美的金属拓扑结构。参与该研究项目的科学家来自意大利(博洛尼亚、米兰、的里雅斯特、威尼斯)、英国(圣安德鲁斯)、美国(波士顿、圣巴巴拉)和维尔茨堡。用于模拟的超级计算机在慕尼黑,同步加速器实验在的里雅斯特进行。"Sangiovanni教授总结道:"这些研究成果完美地诠释了理论物理学和实验物理学协同工作所能产生的非凡成果。...PC版:https://www.cnbeta.com.tw/articles/soft/1373551.htm手机版:https://m.cnbeta.com.tw/view/1373551.htm

封面图片

科学家首次在室温环境下观测到拓扑绝缘体中新量子效应

科学家首次在室温环境下观测到拓扑绝缘体中新量子效应物理学家首次在室温环境下观测到拓扑绝缘体中的新量子效应。普林斯顿大学的研究人员发现,一种由铋和溴元素制成的拓扑绝缘体表现出特殊的量子行为,而这种行为通常只有在高压或者接近于绝对零度的极端实验条件下才能看到。PC版:https://www.cnbeta.com/articles/soft/1331285.htm手机版:https://m.cnbeta.com/view/1331285.htm

封面图片

生物芭蕾:科学家以前所未有的清晰度揭示分子"相干性"之舞

生物芭蕾:科学家以前所未有的清晰度揭示分子"相干性"之舞结合两种技术,研究人员揭示了"相干性"在分子反应中的关键作用,为分子动力学的先进控制铺平了道路。探测过程示意图。资料来源:SamuelPerrett由帝国理工大学生命科学系的贾斯珀-范-托尔(JaspervanThor)教授领导的大型国际研究小组最近在《自然-化学》(NatureChemistry)杂志上报告了他们的研究成果。晶体学是结构生物学中一项强大的技术,它可以拍摄分子排列方式的"快照"。经过数次大规模实验和多年的理论研究,新研究背后的团队将这项技术与另一项绘制分子电子和核构型振动图的技术(即光谱学)相结合。研究小组在世界各地的强大X射线激光设备上演示了这项新技术,结果表明,当他们研究的蛋白质中的分子受到光学激发时,它们的最初运动是"相干"的结果。这表明这是一种振动效应,而不是随后生物反应功能部分的运动。首次在实验中显示的这一重要区别,凸显了光谱物理学如何为结构生物学的经典晶体学方法带来新的启示。范托尔教授说:"维持生命的每一个过程都是由蛋白质完成的,但要了解这些复杂分子是如何完成它们的工作,就必须了解它们原子的排列,以及这种结构在反应过程中是如何变化的。利用光谱学的方法,我们现在可以通过解决其晶体结构,直接以图像的形式看到属于所谓相干过程的超快分子运动。我们现在拥有了以接近原子分辨率的极快时间尺度理解甚至控制分子动力学的工具。我们希望通过分享这一新技术的方法细节,能够鼓励时间分辨结构生物学以及超快激光光谱学领域的研究人员探索相干过程的晶体结构"。技术结合将这些技术结合起来需要使用X射线自由电子激光器(XFEL)设施,包括美国的Linac相干光源(LCLS)、日本的SPring-8Angstrom紧凑型自由电子激光器(SACLA)、韩国的PAL-XFEL以及最近在汉堡的欧洲XFEL。自2009年以来,该团队成员一直在XFEL工作,利用并了解飞秒(十亿分之一秒)时间尺度上反应蛋白质的运动,这被称为飞秒化学。在激光脉冲激发后,利用X射线对结构进行"快照"。2016年,这项技术取得了初步成功,详细描绘了光诱导生物蛋白质发生的变化。然而,研究人员仍需解决一个关键问题:在第一个激光光脉冲之后,飞秒时间尺度上的微小分子"运动"直接源自何处?以前的研究假设所有的运动都与生物反应相对应,即其功能运动。但使用新方法后,研究小组在实验中发现情况并非如此。相干控制为了得出这一结论,他们创造了"相干控制"--塑造激光,以可预测的方式控制蛋白质的运动。2018年在斯坦福的LCLS取得初步成功后,为了检查和验证这种方法,他们在世界各地的XFEL设施共进行了六次实验,每次都组建了大型团队,并形成了国际合作关系。然后,他们将这些实验数据与从飞沫化学修改而来的理论方法相结合,以便将其应用于X射线晶体学数据而非光谱数据。结论是,在皮米尺度和飞秒时间尺度上精确测量到的超快运动并不属于生物反应,而是属于剩余基态的振动一致性。这意味着飞秒激光脉冲过后"遗留"的分子会主导随后测量到的运动,但仅限于所谓的振动相干时间内。范索尔教授说:"我们的结论是,在我们的实验中,即使不包括相干控制,传统的时间分辨测量实际上也是由来自黑暗"反应物"基态的运动所主导,而这些运动与光引发的生物反应无关。相反,这些运动与传统的振动光谱法所测量的运动相对应,具有非常不同但同样重要的意义这实际上是根据以前的理论工作预测出来的,但现在却在实验中得到了证实。这将对时间分辨结构生物学以及超快光谱学领域产生重大影响,因为我们已经开发并提供了分析超快飞秒时间尺度运动的工具。"...PC版:https://www.cnbeta.com.tw/articles/soft/1384887.htm手机版:https://m.cnbeta.com.tw/view/1384887.htm

封面图片

量子突破:科学家开发出操纵奇异材料的新方法

量子突破:科学家开发出操纵奇异材料的新方法上图展示了一种控制材料中量子态的新方法。电场诱导铁电基底发生极化转换,从而产生不同的磁性和拓扑状态。图片来源:MinaYoon、FernandoReboredo、JacquelynDeMink/ORNL、美国能源部拓扑材料发现于20世纪80年代,是一种新的材料阶段,其发现者于2016年获得诺贝尔奖。仅利用电场,ORNL的研究人员就能将普通绝缘体转化为磁性拓扑绝缘体。这种奇特的材料允许电流流过其表面和边缘,而没有能量耗散。电场会引起物质状态的改变。领导这项研究的ORNL的MinaYoon说:"这项研究可以带来许多实际应用,如下一代电子学、自旋电子学和量子计算。"这些物质可能会带来高速、低功耗的电子产品,与目前的硅基电子产品相比,它们能耗更低、运行更快。ORNL的科学家们在《二维材料》(2DMaterials)上发表了他们的研究成果。...PC版:https://www.cnbeta.com.tw/articles/soft/1383317.htm手机版:https://m.cnbeta.com.tw/view/1383317.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人