揭开幽灵粒子的秘密:科学家借助超新星研究中微子的奇异特性

揭开幽灵粒子的秘密:科学家借助超新星研究中微子的奇异特性用超新星揭开中微子之谜现在,俄亥俄州立大学的研究人员在8月15日发表在《物理评论快报》(PhysicalReviewLetters)杂志上的一项研究中,建立了一个新的框架,详细说明了超新星--预示着恒星坍缩死亡的大爆炸--如何被用作研究中微子自我相互作用如何导致宇宙发生巨大变化的有力工具。这项研究的第一作者、俄亥俄州立大学物理学研究生张宝文说:"中微子与典型物质的相互作用率非常小,因此很难探测到它们,也很难测试它们的任何特性。这就是为什么我们必须利用天体物理学和宇宙学来发现它们的有趣现象。"中微子被认为对早期宇宙的形成非常重要,尽管科学家们已经了解到中微子的来源有很多,比如核反应堆或垂死恒星的内部,但中微子仍然让科学家们感到困惑。但是,通过计算中微子的自我相互作用将如何影响来自超新星1987A(现代观测到的最近的超新星)的中微子信号,研究人员发现,当中微子确实与自身相互作用时,它们会形成一种紧密耦合的流体,这种流体会在相对论流体力学下膨胀,相对论流体力学是物理学的一个分支,研究流体如何以两种不同的方式之一对固体物体产生影响。中微子外流理论在所谓的"爆裂外流"情况下,研究人员的理论是,就像在太空真空中打开一个高度加压的气球会向外推送能量一样,爆裂产生的中微子流体会向各个方向运动。第二种情况被描述为"风外流",想象一个有许多喷嘴的高度增压气球,中微子以更恒定的流速逸出,类似于稳定风的喷射。虽然风外流理论更有可能发生在自然界中,但如果爆发的情况得以实现,科学家们就能看到从超新星发射出的新的可观测中微子特征,从而对中微子自相互作用产生前所未有的敏感性。了解这些机制如此重要的原因之一是,如果中微子是作为一种流体在行动,那就意味着它们是作为一个集体在一起行动。如果中微子作为一个集体的特性与单独个体不同,那么超新星的物理特性也会发生变化。但是,这些变化究竟是仅由爆发情况还是外流情况引起的,还有待观察。挑战与未来展望超新星的动力学是复杂的,但这一结果是有希望的,因为通过相对论流体力学,我们知道在理解超新星如何工作的道路上有一个岔路口。不过,科学家们还需要做进一步的研究,才能排除超新星内部也发生爆发的可能性。然而,尽管还存在不确定性,这项研究在回答中微子从超新星喷出时究竟如何散射这一存在了几十年之久的天体物理学问题上仍是一个巨大的里程碑,该研究的合著者、俄亥俄州立大学物理学和天文学教授约翰-比科姆(JohnBeacom)说。这项研究发现,在爆发的情况下,即使使用来自SN1987A的稀少中微子数据和保守的分析假设,也有可能对中微子自相互作用产生前所未有的敏感性。比科姆说:"35年来,这个问题基本上一直没有得到解决。"因此,尽管我们无法彻底解决中微子如何影响超新星的问题,但我们感到兴奋的是,我们能够向前迈出实质性的一步。"接下来,研究小组希望他们的工作能成为进一步研究中微子自相互作用的垫脚石。然而,由于银河系每个世纪只发生两三次超新星,研究人员很可能要再等几十年才能收集到足够多的新中微子数据来证明他们的想法。张说:"我们一直在祈祷另一颗银河系超新星能尽快在某个地方发生,但我们能做的最好的事情就是在它发生之前,尽可能地在我们已知的基础上再接再厉。"...PC版:https://www.cnbeta.com.tw/articles/soft/1379015.htm手机版:https://m.cnbeta.com.tw/view/1379015.htm

相关推荐

封面图片

中微子-光子相互作用:科学家揭开粒子物理学的神秘面纱

中微子-光子相互作用:科学家揭开粒子物理学的神秘面纱石川说:"我们的研究成果对于理解一些最基本的物质粒子的量子力学相互作用非常重要。它们还可能有助于揭示太阳和其他恒星中目前鲜为人知的现象的细节"。中微子是最神秘的基本物质粒子之一。由于中微子几乎不与其他粒子发生任何相互作用,因此极难对其进行研究。它们呈电中性,几乎没有质量。然而,它们的数量却非常丰富,大量的中微子不断从太阳中流出,穿过地球,甚至穿过我们自己,却几乎没有任何影响。了解更多有关中微子的信息,对于检验和完善我们目前对粒子物理学(即标准模型)的理解非常重要。日全食,日冕清晰可见。"在正常的'经典'条件下,中微子不会与光子发生相互作用,"石川解释说,"然而,我们已经揭示了中微子和光子如何能够在极大规模的均匀磁场中发生相互作用--大到103千米--这种磁场出现在恒星周围被称为等离子体的物质形态中。等离子体是一种电离气体,这意味着它的所有原子都获得了或多或少的电子,使它们成为带负电或正电的离子,而不是地球上日常条件下可能出现的中性原子。"弱电霍尔效应及其影响研究人员所描述的相互作用涉及到一种名为"电弱霍尔效应"的理论现象。这是电与磁在极端条件下的相互作用,自然界的两种基本力--电磁力和弱作用力--在此融合为弱电。这是一个理论概念,预计只适用于早期宇宙的极高能条件或粒子加速器的碰撞中。研究得出了这种意想不到的中微子-光子相互作用的数学描述,即拉格朗日。它描述了有关该系统能量状态的所有已知信息。石川健三,该研究的第一作者和通讯作者。图片来源:SohailKeeganPinto石川说:"除了有助于我们理解基础物理学之外,我们的研究还可能有助于解释日冕加热之谜。这是一个由来已久的谜团,它涉及太阳最外层大气--日冕--的温度远高于太阳表面温度的机制。我们的工作表明,中微子和光子之间的相互作用释放出能量,使日冕升温"。石川在总结发言中表达了他们团队的愿望:"我们现在希望继续我们的工作,寻找更深入的见解,特别是在这些极端条件下中微子和光子之间的能量转移"。...PC版:https://www.cnbeta.com.tw/articles/soft/1383901.htm手机版:https://m.cnbeta.com.tw/view/1383901.htm

封面图片

科学家揭开量子化涡旋运动的谜团 解释其与正常流体之间的相互作用

科学家揭开量子化涡旋运动的谜团解释其与正常流体之间的相互作用尽管物理学界已经提出了几种理论模型,但尚不清楚哪种模型是正确的。由大阪都立大学科学研究生院和南部洋一郎理论与实验物理研究所的MakotoTsubota教授和特聘助理SatoshiYui教授领导的研究小组与佛罗里达州立大学和庆应义塾大学的同事合作,以数值方式研究了量子化涡旋与法向流体之间的相互作用。 根据实验结果,研究人员决定了几个理论模型中最一致的一个。他们发现,考虑正常流体变化并包含理论上更准确的相互摩擦的模型与实验结果最相符。平面以上量化涡旋环的可视化(绿色曲线),正常流体涡旋环(红色半圆)。资料来源:MakotoTsubota,OMU“这项研究的主题是量子化涡旋与正常流体之间的相互作用,自从我40年前开始在这一领域进行研究以来,一直是一个巨大的谜团,”坪田教授说道。“计算的进步使得解决这个问题成为可能,我们佛罗里达州立大学的合作者出色的可视化实验取得了突破。正如科学中经常发生的情况一样,技术的后续发展使得阐明这一问题成为可能,这项研究就是一个很好的例子。”他们的研究结果于2023年5月23日发表在《自然通讯》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1367417.htm手机版:https://m.cnbeta.com.tw/view/1367417.htm

封面图片

天文学家利用多重成像的引力透镜揭开超新星揭开暗物质之谜

天文学家利用多重成像的引力透镜揭开超新星揭开暗物质之谜放大到超新星兹威基:从帕洛玛ZTF相机的一小部分开始,即64个"象限"中的一个,每个象限都包含了数以万计的恒星和星系,放大后我们可以看到分别在智利和夏威夷的较大和较清晰的VLT和凯克望远镜进行的详细探索。在分辨率最高的Keck图像上,可以看到超新星Zwicky的四个几乎相同的"副本"。多重图像的产生是由于一个前景星系造成的空间扭曲,在中心位置也可以看到,大约在超新星爆炸地点和地球之间的一半。资料来源:J.Johansson由斯德哥尔摩大学奥斯卡-克莱因中心的ArielGoobar领导的团队发现了一个不寻常的Ia型超新星,即SNZwicky。Ia型超新星在测量宇宙距离方面发挥了关键作用。它们被用于发现宇宙的加速膨胀,导致了2011年诺贝尔物理学奖的获得。新发现的超新星由于其非凡的亮度和多图像的配置而脱颖而出,这是阿尔伯特-爱因斯坦的广义相对论所预测的一种罕见现象。在特殊情况下,大型天体充当了宇宙放大镜的角色。这些放大镜也创造了在天空中不同位置可见的多条光路。在帕洛玛天文台的兹威基瞬变设施探测到这颗超新星的几周内,研究小组用夏威夷毛纳克亚山顶的W.M.凯克天文台和智利的甚大望远镜的自适应光学仪器观测了SNZwicky。凯克天文台的观测解析了多张图像,证实了不寻常的超新星亮度背后的强透镜假说。美国宇航局的哈勃太空望远镜也观测到了SNZwicky的四张图像。在SNZwicky中观察到的多重成像透镜效应是由一个前景星系施加的引力场作为引力透镜的结果。在特殊情况下,大型天体充当了宇宙放大镜的角色。这些放大镜也创造了在天空中不同位置可见的多条光路。观察多幅图像不仅可以揭示强光超新星的细节,还可以提供一个独特的机会来探索导致光线偏转的前景星系的特性。这可以让天文学家更多地了解星系的内部核心和暗物质。凝聚型超新星也是非常有前途的工具,可以完善描述宇宙膨胀的模型。随着科学家们继续解开宇宙的复杂性,SNZwicky的多重成像透镜的发现为研究引力透镜现象及其对宇宙学的影响提供了新的途径。这是揭开暗物质、暗能量和我们宇宙的最终命运之谜的重要一步。"斯德哥尔摩大学的博士后、该研究的共同作者JoelJohansson说:"SNZwicky的极度放大给了我们一个前所未有的机会来研究遥远的Ia型超新星爆炸的特性,当我们用它们来探索暗能量的性质时,我们需要这些特性。该项目的主要研究者、斯德哥尔摩大学奥斯卡-克莱因中心主任ArielGoobar教授对这一重大发现表达了他的热情:"SNZwicky的发现不仅展示了现代天文仪器的卓越能力,也代表着我们在寻求了解塑造我们宇宙的基本力量方面迈出了重要一步"。斯德哥尔摩大学物理系奥斯卡-克莱因中心领导发现SNZwicky的团队:从左至右依次为EdvardMörtsell,SteveSchulze,JoelJohansson,AnaSaguésCarracedo,ArielGoobar和NikkiArendse。资料来源:奥斯卡-克莱因中心该团队的研究结果已经发表在《自然-天文学》上,论文的题目是"发现具有放大的标准烛光SNZwicky的引力透镜星系群"。该出版物对SNZwicky进行了全面的分析,包括从世界各地的望远镜收集的成像和光谱数据。...PC版:https://www.cnbeta.com.tw/articles/soft/1368109.htm手机版:https://m.cnbeta.com.tw/view/1368109.htm

封面图片

红巨星超新星揭示了更早的宇宙的秘密

红巨星超新星揭示了更早的宇宙的秘密由明尼苏达大学双城分校的研究人员领导,这项研究最近发表在《自然》杂志上,这是世界上领先的同行评审的多学科科学杂志。该论文的主要作者、明尼苏达大学物理和天文学学院副教授帕特里克-凯利说:"这是第一次详细了解宇宙演化过程中更早的时代的超新星。这非常令人兴奋,因为我们可以详细了解宇宙在不到目前年龄的五分之一时的个别恒星,并开始了解许多亿年前存在的恒星是否与附近的恒星不同。"这颗红色超巨星比太阳大约500倍,它的红移值为3,在这个细节上,比其他任何被观察到的超新星都要远约60倍。由明尼苏达大学双城分校领导的一个国际研究小组利用显示恒星爆炸和冷却的演变过程的图像,测量了一颗恒星的大小,可以追溯到110多亿年前。上图显示了Abell370星系团背后的超新星的光线。资料来源:WenleiChen,NASA使用来自哈勃太空望远镜的数据,并利用明尼苏达大学的大型双目望远镜进行后续光谱分析,研究人员能够确定这颗红色超巨星的多个详细图像,因为一种叫做引力透镜的现象,即质量,如星系中的质量,使光线弯曲。这就放大了恒星发出的光线。凯利说:"引力透镜就像一个天然的放大镜,将哈勃的力量放大了8倍。在这里,我们看到了三个图像。尽管它们可以在同一时间看到,但它们显示了超新星在不同年龄段的情况,相隔数天。我们看到超新星迅速冷却,这使我们能够基本上重建所发生的事情,研究超新星在最初几天是如何冷却的,只需一组图像。它使我们能够看到一颗超新星的重演。"研究人员将这一发现与2014年凯利的另一个超新星发现相结合,以估计当宇宙是其目前年龄的一小部分时,有多少恒星在爆炸。他们发现,超新星的数量可能比以前认为的多得多。A-D板块(从左上角顺时针方向)显示了超新星的几个不同阶段:超新星消逝后宿主星系的位置,宿主星系和超新星在演化过程中不同阶段的三个图像,演化中的超新星的三个不同面孔,以及冷却中的超新星的不同颜色。资料来源:WenleiChen,NASA"核心坍缩超新星标志着大质量、短寿命恒星的死亡。"该论文的第一作者、明尼苏达大学物理和天文学学院的博士后研究员WenleiChen,说:"我们探测到的核心坍缩超新星的数量可以用来了解在宇宙更年轻的时候有多少大质量恒星在星系中形成。"...PC版:https://www.cnbeta.com.tw/articles/soft/1335097.htm手机版:https://m.cnbeta.com.tw/view/1335097.htm

封面图片

时空涟漪 - 科学家揭开引力波之间相互作用的秘密

时空涟漪-科学家揭开引力波之间相互作用的秘密当两个黑洞相撞时,其冲击力是如此之大,以至于我们在地球上都能探测到。这些天体是如此巨大,以至于它们的碰撞会在时空本身产生涟漪。科学家称这些涟漪为引力波。虽然爱因斯坦早在1916年就预言了引力波的概念,但物理学家直到2015年才在LIGO(激光干涉引力波天文台)上直接探测到引力波。现在,在能源部科学办公室和其他几个联邦机构的支持下,科学家们正在努力更好地理解这些引力波,以及它们能告诉我们有关黑洞的信息。除了威力巨大之外,这些碰撞还具有令人难以置信的复杂物理特性。为了准确,对它们的计算机模拟也必须非常复杂。模拟需要包括碰撞过程中的每一个步骤:黑洞相互螺旋上升、合并、变成一个扭曲的黑洞,然后沉降为一个单一的黑洞。这个过程非常复杂,科学家需要超级计算机来运行模拟。这张照片来自"模拟极端时空"(SimulatingeXtremeSpacetimes,简称SXS)合作项目利用超级计算机进行的模拟,照片中两个黑洞即将合并。当黑洞旋转在一起时,它们会在空间和时间上产生被称为引力波的涟漪。图片来源:SXSLensing/SimulatingeXtremeSpacetimesCollaboration然后,物理学家将这些模拟的数值数据与这一过程的模型进行比较。旧版本的模型显示引力波不会相互影响或相互作用。然而,科学家们怀疑这并不准确。试想一下,两个人相邻站在一个水池里制造引力波。如果每个人发出的波都非常小,那么这些波就有可能互不干扰。它们在相互影响之前就会消失。但是,如果两个人都在制造大波浪,波浪就会相互碰撞,产生新的波浪。科学家们知道碰撞会产生强烈的引力波,因此认为它们会相互影响--只是没有显示出来而已。来自加州理工学院(Caltech)、哥伦比亚大学、密西西比大学、康奈尔大学和马克斯-普朗克引力物理研究所的一个研究小组对这些数值输出进行了新的、更详细的分析。分析结果表明,引力波之间存在相互作用。每个波都会导致其他波发生轻微变化。相互作用产生了具有各自独立频率的新型波。这些新的波比原来的波更小、更混乱、更不可预测。通过在模型中加入这一特征,科学家们可以更准确地描述数值输出告诉他们的信息。LIGO利文斯顿实验室。资料来源:LIGO实验室在黑洞碰撞模型中加入这些相互作用将使模型更加精确。反过来,这些模型将帮助我们更好地解释真实世界的观测结果。模型越精确,对解读来自LIGO的数据就越有用。此外,更好的模型还能帮助科学家弄清广义相对论是否是解释黑洞实际情况的正确理论。虽然广义相对论--爱因斯坦提出的著名理论广泛地解释了引力如何影响时空,但这一理论在多大程度上适用于黑洞的奇特性质仍有待确定。黑洞碰撞距离地球和我们的日常生活遥远得难以想象。虽然我们无法亲身感受到引力波,但科学家们获得的数据和建立的模型每天都在扩展我们对这些不可思议现象的认识。...PC版:https://www.cnbeta.com.tw/articles/soft/1389973.htm手机版:https://m.cnbeta.com.tw/view/1389973.htm

封面图片

通过引力透镜 天文学家捕捉到奇异的"极度扭曲"超新星

通过引力透镜天文学家捕捉到奇异的"极度扭曲"超新星天文学家捕捉到了一颗超新星"兹威基超新星",由于引力透镜的作用,这颗超新星出现了多幅图像。这次观测是迄今为止最大规模超新星调查的一部分,有助于了解包括暗能量在内的宇宙现象,也是正在进行的银河系外爆炸编目和研究工作的一部分。(引力透镜超新星的艺术家概念图)。这颗超新星被称为"兹威基超新星"(SNZwicky),最初是由加州理工学院领导的兹威基瞬变设施(ZTF)观测到的,该设施位于圣迭戈附近的帕洛玛天文台。这次观测是目前正在进行的最大规模超新星巡天观测的一部分。这里看到的是SN兹威基的四幅重复图像,是W.M.凯克天文台以尽可能高的分辨率观测到的。周围环境是以较低分辨率观测到的。图片来源:JoelJohansson"有了ZTF,我们就拥有了近乎实时地捕捉超新星并对其进行分类的独特能力。"今天发表在《自然-天文学》(NatureAstronomy)上的这项研究的第一作者、瑞典斯德哥尔摩大学奥斯卡-克莱因中心主任阿里尔-古巴尔(ArielGoobar)说:"我们注意到茨维基超新星比它与我们的距离本应更亮,并很快意识到我们看到了一种非常罕见的现象,叫做强引力透镜。这种透镜物体可以帮助我们独特地探测星系内核物质的数量和分布。"正如爱因斯坦在一个多世纪前所预言的那样,来自一个宇宙天体的光线在到达我们的途中遇到一个致密天体,就会发生引力透镜效应。致密天体就像一个透镜,可以弯曲和聚焦光线。根据透镜的密度和透镜与我们之间的距离,这种扭曲效应的强度会有所不同。在强透镜作用下,来自宇宙天体的光线会发生严重扭曲,以至于被放大并分裂成同一图像的多个副本。这部来自奥斯卡-克莱因中心(OskarKleinCentre)的解说影片用水彩插图解释了"兹威基"SN的发现。自爱因斯坦提出引力弯曲理论几年后的1919年起,天文学家就开始观测光的引力弯曲,但超新星的瞬时性使得SNZwicky(又称SN2022qmx)这样的事件很难被发现。事实上,虽然科学家们以前曾多次发现过被称为类星体的遥远天体的透镜重复图像,但只发现过少数几个超新星的透镜重复图像。其中两个案例是在帕洛玛发现的:SNZwicky和ciPTF16geu,它们是由帕洛玛瞬变工厂(iPTF)发现的,iPTF是ZTF的前身。古巴尔说:"SN兹威基是用光学望远镜发现的最小的分辨引力透镜系统。iPTF16geu是一个更宽的系统,但放大倍数更大。"这个动画解释了强引力透镜现象。ZTF发现SNZwicky之后,Goobar和他的国际团队动用了一整套天文设备对其进行跟踪研究。夏威夷毛纳凯亚(Maunakea)W.M.凯克天文台(W.M.KeckObservatory)的近红外照相机2(NIRC2)解析了SNZwicky,揭示了超新星的透镜作用足够强,以至于产生了同一天体的多幅图像。加州理工学院光学天文台的天文学家克里斯托弗-弗里姆林(ChristofferFremling)说:"那天晚上我正在观测,当我看到SN茨维基的透镜图像时,我绝对惊呆了。我们通过'明亮瞬变巡天'捕捉并分类了成千上万的瞬变体,这使我们有独特的能力发现像SN兹威基这样非常罕见的现象。"超新星、暗能量和宇宙之谜SN兹威基被归类为Ia型超新星。这些即将陨落的恒星在结束生命时,会发出亮度始终如一的光。这种独特的特性在1998年揭示宇宙加速膨胀的过程中发挥了重要作用,而宇宙加速膨胀的原因是一种尚不为人知的现象--暗能量。ZTF安装在帕洛玛天文台的48英寸塞缪尔-奥斯钦望远镜上。资料来源:帕洛玛天文台/加州理工学院"强透镜Ia型超新星可以让我们看到更远的时间,因为它们被放大了。观测更多的Ia型超新星将给我们提供一个前所未有的机会来探索暗能量的本质,"斯德哥尔摩大学博士后、该研究的共同作者乔尔-约翰森(JoelJohansson)说。"建立宇宙膨胀历史模型所需的缺失成分是什么?构成星系绝大部分质量的暗物质是什么?"古巴尔说:"随着我们利用ZTF和即将建成的维拉-鲁宾天文台发现更多的'茨维基SN',我们将拥有另一种工具来揭开宇宙的神秘面纱并找到答案。"迄今为止,ZTF明亮瞬变巡天已经发现了7811个确认的超新星。巡天的主要目标是对仪器能够可靠探测到的所有河外星系爆炸进行编目和分类。由于ZTF能够快速扫描广阔的天空,因此它是目前同类巡天中规模最大、最完整的巡天。全世界的天文学家都在利用"明亮瞬变巡天"来了解宇宙爆炸的种类、常见程度以及它们的亮度。...PC版:https://www.cnbeta.com.tw/articles/soft/1376699.htm手机版:https://m.cnbeta.com.tw/view/1376699.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人