超导突破:科学家发现量子物质的新状态

超导突破:科学家发现量子物质的新状态这种"自旋三重电子对晶体"是一种以前未知的拓扑量子物质状态。这一发现最近发表在《自然》杂志上。顾强强是在文理学院詹姆斯-吉尔伯特-怀特杰出荣誉教授、物理学家J.C.SéamusDavis实验室工作的博士后研究员,他与科克大学学院的乔-卡罗尔和牛津大学的王树秋共同领导了这项研究。当配对电势呈现奇奇偶性时,超导体就是拓扑超导体,这会导致每个电子对采用自旋三重态,两个电子自旋的方向相同。顾强强介绍说,拓扑超导体是物理学家们热衷研究的对象,因为从理论上讲,它们可以构成超稳定量子计算机的材料平台。然而,即使对拓扑超导进行了长达十年的深入研究,除了同样在康奈尔大学发现的超流体3He之外,还没有任何块体材料被明确认定为自旋三奇偶超导体。最近,一种奇特的新材料--二碲化铀(UTe2)成为这种分类的极有希望的候选者。然而,它的超导阶参数仍然难以捉摸。2021年,理论物理学家开始提出,UTe2实际上处于拓扑对密度波(PDW)状态。此前从未探测到过这种形式的量子物质。简单地说,拓扑对密度波就像超导体中的成对电子的静态舞蹈,但这些成对电子在空间中形成周期性的晶体图案。"我们康奈尔大学的团队在2016年利用我们为此发明的超导尖端扫描约瑟夫森隧穿显微镜发现了有史以来观测到的第一个PDW,"顾说。"从那时起,我们开创了在毫开尔文温度和微伏能量分辨率下的SJTM研究。在UTe2项目中,我们直接观察到了超导配对势在原子尺度上的空间调制,并发现它们的调制完全符合PDW状态下电子对密度在空间周期性调制的预测。我们探测到的是一种新的量子物质态--由自旋-三重库珀对组成的拓扑对密度波"。库珀对密度波是电子量子物质的一种形式,其中电子对凝固成超导PDW态,而不是形成传统的"超导"流体,在这种流体中,所有电子对都处于相同的自由运动状态。顾强强说:"在自旋三重超导体中首次发现PDW令人兴奋。铀基重费米子超导化合物是一类新颖奇特的材料,为实现拓扑超导提供了一个前景广阔的平台。......我们的科学发现还指出了这种有趣的量子态在s波、d波和p波超导体中无处不在的性质,并为在广泛的材料中识别这种状态提供了新的途径。"...PC版:https://www.cnbeta.com.tw/articles/soft/1380305.htm手机版:https://m.cnbeta.com.tw/view/1380305.htm

相关推荐

封面图片

超导技术的突破:首次展示成对电子之间的自旋关联性

超导技术的突破:首次展示成对电子之间的自旋关联性这种奇怪的行为是阿尔伯特-爱因斯坦将纠缠描述为"远距离的幽灵行动"的原因。虽然它很奇怪,但它是一个重要的现象。事实上,关于光粒子(光子)之间的纠缠的研究还被授予今年的诺贝尔物理学奖。两个电子也可以纠缠在一起--例如在它们的自旋上。在超导体中,电子形成所谓的库珀对,负责产生无损的电流,其中的各个自旋是纠缠在一起的。几年来,瑞士纳米科学研究所和巴塞尔大学物理系的研究人员已经能够从超导体中提取电子对,并在空间上分离这两个电子。这是通过两个量子点--平行连接的纳米电子结构实现的,每个量子点只允许单一电子通过。电子离开(传统)超导体(S)时只能是成对的,而且只能有相反的自旋(箭头向上或向下,红色或蓝色)。如果两个电子的路径都被平行自旋过滤器(这里为自旋向下(蓝色))阻断,原则上自旋向上(红色)的单个电子可以出去,但来自超导体的成对电子被阻断,这在理想情况下会抑制两种电流。资料来源:巴塞尔大学物理系,ScixelChristianSchönenberger教授和AndreasBaumgartner博士的团队与来自IstitutoNanoscienz-CNR和比萨ScuolaNormaleSuperiore的LuciaSorba教授领导的研究人员合作,现在已经能够在实验中早已被预期的理论:来自超导体的电子总是以一对相反的自旋出现。他们今天(11月23日)在科学杂志《自然》上报告了他们的发现。使用一个创新的实验装置,物理学家们能够测量出当一个电子的自旋向下时,另一个电子的自旋是向上的,反之亦然。项目负责人安德烈亚斯-鲍姆加特纳解释说:"我们因此在实验中证明了成对电子的自旋之间的负相关关系。"研究人员通过使用他们在实验室中开发的自旋过滤器实现了这一点。利用微小的磁铁,他们在两个量子点中的每一个产生了单独可调的磁场,将库珀对电子分开。由于自旋也决定了电子的磁矩,所以每次只允许一种特定类型的自旋通过。与平行自旋过滤器相反,对于反平行自旋过滤器,电子对被允许离开超导体,这可以被检测为在两个路径上的电流明显增强。资料来源:巴塞尔大学物理系,Scixel"我们可以调整这两个量子点,以便主要让具有某种自旋的电子通过它们,"第一作者ArunavBordoloi博士解释说。"例如,自旋向上的电子通过一个量子点,自旋向下的电子通过另一个量子点,或者反之亦然。如果两个量子点都被设定为只通过相同的自旋,那么两个量子点中的电流就会减少,尽管单个电子很可能通过一个量子点。""通过这种方法,我们能够首次从超导体中检测到电子自旋之间的这种负相关关系,"AndreasBaumgartner总结道。"我们的实验是第一步,但还不是电子自旋纠缠的明确证明,因为我们不能任意设置自旋过滤器的方向,但我们正在努力。"这项研究最近发表在《自然》杂志上,被认为是朝着进一步实验调查量子力学现象迈出的重要一步,例如固体中粒子的纠缠,这也是量子计算机的一个关键组成部分。...PC版:https://www.cnbeta.com.tw/articles/soft/1333623.htm手机版:https://m.cnbeta.com.tw/view/1333623.htm

封面图片

超导新纪元: 二碲化铀如何重塑量子计算

超导新纪元:二碲化铀如何重塑量子计算他们的发现最近发表在著名的《自然》杂志上。乔-卡罗尔(JoeCarroll)是科克大学宏观量子物质小组实验室量子物理学教授塞缪斯-戴维斯(SéamusDavis)的一名博士研究员,也是一篇论文的第一作者,他发现了一种新型不寻常超导体二碲化铀(UTe2)中的空间调制超导状态。资料来源:ClareKeogh/UCC突破性发现第一作者乔-卡罗尔(JoeCarroll)是与UCC量子物理学教授塞缪斯-戴维斯(SéamusDavis)合作的博士研究员,他解释了论文的主题。"超导体是一种神奇的材料,具有许多奇特和不寻常的性质。最著名的是,它们能让电流以零电阻流动。也就是说,如果你将电流通过它们,它们不会开始发热,事实上,尽管承载着巨大的电流,它们也不会耗散任何能量。它们之所以能做到这一点,是因为在金属中移动的不是单个电子,而是结合在一起的成对电子。这些电子对共同形成了宏观量子力学流体"。"我们的团队发现,一些电子对形成了一种新的晶体结构,嵌入到这种背景流体中。这些类型的状态是我们小组在2016年首次发现的,现在被称为电子对密度波。这些电子对密度波是一种新形式的超导物质,我们仍在探索其特性。""对我们和更广泛的群体来说,尤其令人兴奋的是,UTe2似乎是一种新型超导体。近40年来,物理学家一直在寻找这样一种材料。电子对似乎具有内在角动量。如果这是真的,那么我们探测到的就是第一个由这些奇异电子对组成的对密度波"。对量子计算的实际影响当被问及这项工作的实际意义时,卡罗尔先生解释道;"有迹象表明,UTe2是一种特殊的超导体,可能会对量子计算产生巨大影响。典型的经典计算机使用比特来存储和处理信息。量子计算机依靠量子比特或量子比特来完成同样的工作。现有量子计算机面临的问题是,每个量子比特必须处于两种不同能量的叠加状态--就像薛定谔的猫既可以被称为'死'猫,也可以被称为'活猫'。这种量子态很容易被破坏,坍缩到能量最低的状态--'死'--从而切断任何有用的计算。"这给量子计算机的应用带来了巨大限制。然而,自从五年前发现UTe2以来,人们对它进行了大量研究,有证据表明它是一种超导体,可以作为拓扑量子计算的基础。在这种材料中,计算过程中的量子比特寿命不受限制,这为开发更稳定、更有用的量子计算机开辟了许多新途径。事实上,微软公司已经为拓扑量子计算投入了数十亿美元,因此这已经是一门成熟的理论科学。"科学界一直在寻找的是一种相关的拓扑超导体;UTe2似乎就是这种超导体。我们的发现为UTe2提供了另一块拼图。要利用这样的材料进行应用,我们必须了解它们的基本超导特性。所有的现代科学都是循序渐进的。我们很高兴能为了解一种材料做出贡献,这种材料可能会让我们更接近更实用的量子计算机。"结论与未来展望科克大学研究与创新副校长JohnF.Cryan教授向科克大学宏观量子物质小组实验室的研究团队表示祝贺:"这一重要发现将对量子计算的未来产生重大影响。未来几周,科克大学将启动"UCCFutures-未来量子与光子学"项目,SeamusDavis教授和宏观量子物质小组领导的研究使用了世界上最强大的显微镜之一,将在这一激动人心的项目中发挥至关重要的作用"。...PC版:https://www.cnbeta.com.tw/articles/soft/1376073.htm手机版:https://m.cnbeta.com.tw/view/1376073.htm

封面图片

超导研究的新时代 - 科学家们发现"Goldilocks"材料

超导研究的新时代-科学家们发现"Goldilocks"材料这些超导体的基础在于镍,促使许多科学家将这一时期的超导研究称为"镍时代"。在许多方面,镍酸盐与铜酸盐相似,后者是在20世纪80年代发现的,以铜为基础。但是现在,一类新的材料正在发挥作用:在维也纳大学和日本的大学之间的合作中,有可能在计算机上比以前更精确地模拟各种材料的行为。科学家发现了"Goldilocks区",在这个区里,超导性工作得特别好。而这个区域既不是用镍也不是用铜,而是用钯来达到。这可能为超导研究带来一个新的"钯金时代"。这些结果现在已经发表在科学杂志《物理评论快报》上。寻找更高的过渡温度在高温下,超导体的行为与其他导电材料非常相似。但是当它们被冷却到某个"临界温度"以下时,它们就会发生巨大的变化:它们的电阻完全消失,突然间它们可以毫无损失地导电。材料在超导和正常导电状态之间变化的这一极限,被称为"临界温度"。"我们现在已经能够计算出整个系列材料的这个"临界温度"。通过我们在高性能计算机上的建模,我们能够高度准确地预测镍酸盐超导的相图,正如后来的实验所显示的那样,"来自维也纳大学固体物理研究所的KarstenHeld教授说。许多材料只有在绝对零度以上(-273.15°C)才会成为超导体,而其他材料即使在更高的温度下也能保持其超导特性。一种在正常室温和正常大气压力下仍然保持超导性的超导体将从根本上改变我们产生、运输和使用电力的方式。然而,这样一种材料还没有被发现。尽管如此,高温超导体,包括那些杯状物类的超导体,在技术方面发挥着重要作用--例如,在传输大电流或产生极强的磁场方面。铜?镍?还是钯?寻找最佳的超导材料是很困难的:有许多不同的化学元素会出现问题。可以把它们放在不同的结构中,可以添加其他元素的微小痕迹来优化超导性。KarstenHeld教授说:"为了找到合适的候选材料,你必须在量子物理学层面上了解电子在材料中如何相互作用。"这表明,电子的相互作用强度有一个最佳值。相互作用必须是强的,但也不能太强。在这两者之间有一个"黄金地带",使其有可能达到最高的过渡温度。钯酸盐是最佳解决方案这个中等相互作用的黄金区域既不能用铜酸盐也不能用镍酸盐来达到--但人们可以用一种新型的材料来击中靶心:所谓的钯酸盐。"钯在周期表中直接比镍低一行。属性相似,但那里的电子平均离原子核和彼此更远一些,所以电子相互作用更弱,"卡斯滕-海德说。该模型计算显示了如何实现钯数据的最佳过渡温度。"计算结果是非常有希望的,"卡斯滕-赫尔德说。"我们希望,我们现在可以利用它们来启动实验研究。如果我们有一个全新的、额外的钯类材料可用来更好地理解超导性,并创造出更好的超导体,这可能会使整个研究领域向前发展。"...PC版:https://www.cnbeta.com.tw/articles/soft/1356697.htm手机版:https://m.cnbeta.com.tw/view/1356697.htm

封面图片

研究人员成功实现利用超导体掌握芯片上的自旋波

研究人员成功实现利用超导体掌握芯片上的自旋波这些磁体中的微小自旋波可能在未来成为电子器件的替代品,对节能信息技术或量子计算机中的连接部件等很有意义。这一突破发表在《科学》杂志上,主要让物理学家对磁体和超导体之间的相互作用有了新的认识。"自旋波是磁性材料中的波,我们可以利用它来传输信息,"领导这项实验的迈克尔-博斯特解释说。"由于自旋波可以成为替代电子产品的高能效构件,科学家们多年来一直在寻找控制和操纵自旋波的有效方法"。""早有预言金属电极可以控制自旋波,但直到现在,物理学家几乎还没有在实验中看到这种效果。"量子纳米科学系副教授ToenovanderSar说:"我们研究团队的突破在于,我们证明了如果使用超导电极,确实可以正确控制自旋波。"其工作原理如下:自旋波产生磁场,磁场又在超导体中产生超电流。超电流就像自旋波的一面镜子:超导电极将磁场反射回自旋波。超导镜面使自旋波上下移动的速度更慢,从而使自旋波易于控制。当自旋波经过超导电极时,它们的波长会完全改变,只要稍微改变电极的温度,我们就能非常精确地调节变化的幅度。实验插图。图中显示了薄磁层上的两个金电极。中间是一个超导电极。研究人员用左边的金电极在磁性材料中产生自旋波,自旋波向右边传播。电极顶部是一个方形钻石膜,研究人员可以通过它看到超导电极。资料来源:代尔夫特理工大学MichaelBorst"我们首先铺设了一层薄薄的钇铁石榴石(YIG)磁层,它被称为地球上最好的磁铁。我们在上面铺设了一个超导电极和另一个电极来诱导自旋波。通过冷却到零下268度,我们让电极进入了超导状态,"范德萨说。"令人惊奇的是,自旋波随着温度的降低变得越来越慢。这让我们有了操纵自旋波的独特方法;我们可以让自旋波偏转、反射、共振等等。但这也让我们对超导体的特性有了新的认识。"研究人员钻石中的电子作为自旋波磁场的传感器,对自旋波进行成像,这对实验至关重要。它最酷的地方在于可以透过不透明的超导体观察下面的自旋波,就像核磁共振扫描仪可以透过皮肤观察人的身体一样。""自旋波技术仍处于起步阶段,"博斯特说。"例如,要利用这种技术制造高能效计算机,我们首先必须开始构建小型电路来执行计算。我们的发现打开了一扇门:超导电极可以实现无数新的高能效自旋波电路"。范德萨补充说:"我们现在可以设计基于自旋波和超导体的设备,这些设备产生的热量和声波都很少。想想自旋电子学版的频率滤波器或谐振器吧,这些元件可以在手机的电子电路中找到。或者可以作为量子计算机中量子位之间的晶体管或连接器的电路。"...PC版:https://www.cnbeta.com.tw/articles/soft/1393793.htm手机版:https://m.cnbeta.com.tw/view/1393793.htm

封面图片

中国科学家独立发现全新高温超导体 实现超导只需-192℃

中国科学家独立发现全新高温超导体实现超导只需-192℃超导领域已经产生5个诺贝尔奖,中国科学家也在超导领域获得了一次国家自然科学一等奖、一次国家最高科学技术奖。王猛教授团队历时三年,成功获得了镍氧化物La3Ni2O7单晶,并确定它能在压力下实现超导,转变温度高达80K(零下192摄氏度),达到了液氮温区(零下196摄氏度)。它也成为铜氧化物高温超导体之外,完全不同体系的高温超导体,而且电子结构、磁性与铜氧化物完全不同,有望推动破解高温超导机理,使设计和预测高温超导材料成为可能。《自然》杂志审稿人也高度评价了这一成果,认为它“具有突出重要性”,“是开创性的发现”。...PC版:https://www.cnbeta.com.tw/articles/soft/1370677.htm手机版:https://m.cnbeta.com.tw/view/1370677.htm

封面图片

创造新的物质状态 - 研究人员发明了两种新型超导技术

创造新的物质状态-研究人员发明了两种新型超导技术研究人员通过一次排列一个原子的方法,成功地制造出了新型超导体,这有可能促进创新材料的开发和量子计算的进步。这项研究为克服天然材料的局限性提供了一种可行的方法,为未来电子和计算技术中的新型物质状态铺平了道路。未来的计算机是什么样的?它将如何工作?寻找这些问题的答案是基础物理研究的主要动力。从经典电子学的进一步发展到神经形态计算和量子计算机,有几种可能的方案。所有这些方法的共同点是,它们都基于新颖的物理效应,其中有些效应迄今为止只能在理论上预测。研究人员不遗余力地使用最先进的设备来寻找新的量子材料,以便创造出这种效应。但是,如果没有天然存在的合适材料怎么办?在最近发表于《自然-物理》(NaturePhysics)的一项研究中,UZH教授提图斯-诺伊佩特(TitusNeupert)的研究小组与位于德国哈勒(Halle)的马克斯-普朗克微结构物理研究所(MaxPlanckInstituteofMicrostructurePhysics)的物理学家密切合作,提出了一种可能的解决方案。研究人员自己一个原子一个原子地制造所需的材料。他们的研究重点是新型超导体,这种超导体特别有趣,因为它们在低温下电阻为零。超导体有时被称为"理想二磁体",由于其与磁场的非凡相互作用,被许多量子计算机所采用。理论物理学家花了多年时间研究和预测各种超导状态。诺伊佩特教授说:"然而,到目前为止,只有少数超导状态在材料中得到了确证。"在他们令人兴奋的合作中,哈佛大学的研究人员从理论上预测了原子应该如何排列才能产生新的超导相,德国的研究小组随后进行了实验,以实现相关的拓扑结构。他们利用扫描隧道显微镜,以原子精度将原子移动并沉积到正确的位置。同样的方法还用于测量系统的磁性和超导特性。通过在超导铌表面沉积铬原子,研究人员创造出了两种新型超导电性。类似的方法以前也曾用于操纵金属原子和分子,但直到现在,这种方法还不可能制造出二维超导体。这些结果不仅证实了物理学家们的理论预测,还让他们有理由推测用这种方法还能制造出哪些新的物质状态,以及它们如何被用于未来的量子计算机。...PC版:https://www.cnbeta.com.tw/articles/soft/1385313.htm手机版:https://m.cnbeta.com.tw/view/1385313.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人